首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚乙烯合丁烯-嵌-聚氧乙烯嵌段共聚物(PHB-PEO)作模板, 采用蒸发诱导自组装方法, 分别制备了Y2O3和Nd2O3介孔薄膜. 用小角、广角X射线衍射和透射电子显微镜对薄膜样品在不同的热处理阶段进行了表征. 结果表明, 所制备的Y2O3和Nd2O3薄膜样品呈现一种大孔径(平均孔径分别约为11.5和12.5 nm)、有序的立方扭曲球形孔排列、稳定于450 ℃并具有部分晶态孔壁结构的介孔薄膜材料.  相似文献   

2.
胶晶模板法制备3DOM尖晶石型LiMn2O4及表征   总被引:2,自引:0,他引:2  
通过乳液聚合获得粒径为280 nm左右的聚甲基丙烯酸甲酯(PMMA)微球, 从其母液中离心沉降制得胶晶模板. 将LiNO3, Mn(Ac)2·4H2O和柠檬酸按摩尔比1∶2∶2配成前驱物的醇水混合溶液, 填充于PMMA胶晶模板间隙中, 经干燥和焙烧氧化成孔制得了三维有序大孔(3DOM)锂锰氧化物. 实验结果表明, 当n(Li)/n(Mn)=0.6, 前驱液浓度在0.6~1.0 mol/L之间和升温速率为2 ℃/min时, 分别在300与600 ℃下两段恒温焙烧2~3 h有利于目标产物的形成. SEM测试结果表明, PMMA胶晶模板和3DOM锂锰氧化物均为面心立方紧密堆积, 排列规则有序, 大孔直径在200~240 nm之间, 孔壁厚度在30~45 nm之间. 产物经XRD晶相测定和EDTA, KMnO4滴定分析确证为正尖晶石型LiMn2O4.  相似文献   

3.
以Fe2O3为铁源原料, 利用热还原法成功地制备了LiFePO4/C复合材料. 用XRD以及SEM对材料的晶体结构以及表面形貌进行了表征. 通过循环伏安和充放电测试研究了材料的电化学性能. 研究结果表明, 于700 ℃下制备的LiFePO4/C复合材料在0.1C的倍率下可以得到放电容量144.8 mA·h/g, 在循环160次后, 容量仍保持在141.4 mA·h/g. 这种以廉价的Fe2O3代替目前常用的二价铁盐原料方法, 具有减少LiFePO4合成成本的优点.  相似文献   

4.
在表面活性剂辅助的水热条件下合成出尺寸均一的Gd2O3∶Eu3+纳米棒, 对其结构和荧光性质进行了表征, 并对其生长机理进行了初步讨论. XRD结果表明, 水热前驱体样品为六方晶相的Gd(OH)3, 经过灼烧之后样品为立方相的Gd2O3. TEM照片表明, 所得样品为直径60 nm、长度约600 nm的纳米棒. 荧光光谱表明, 在波长为254 nm 的紫外光激发下, Gd2O3∶Eu3+纳米棒产生了不同于前驱体的特征红光发射, 对应于Eu3+ 的5D0-7F2跃迁, 表明Gd2O3是红色发光材料的良好基质.  相似文献   

5.
掺杂Mn对CeO2-ZrO2-Al2O3材料性质的影响   总被引:1,自引:1,他引:0  
采用共沉淀法制备了一系列Mn掺杂摩尔分数为0~5%的CeO2-ZrO2-Al2O3(CZA)复合氧化物, 并采用BET, OSC, XRD, XPS, H2-TPR等方法对所制备的材料进行了表征. 结果表明, 所制备的材料均形成了稳定的CZA固溶体, 尤其是Mn掺杂0.5%的材料在600和1000 ℃焙烧后均表现出最好的织构性能. OSC和H2-TPR的结果表明, Mn掺杂量≤1%时, 氧在材料中的体相移动是材料储氧和被还原的速控步骤, 并且Mn的掺杂量为0.2%时, 储氧量最大, 材料的还原温度也最低; Mn掺杂量>1%时, Mn物种对材料储氧和被还原的作用显著. XPS结果表明, Mn在焙烧过程中会迁移向表面, 结合H2-TPR结果可知, 新鲜样品表面的MnOx物种主要为Mn2O3, 而老化样品主要为Mn3O4.  相似文献   

6.
等离子体协同CuO/TiO2-γ-Al2O3催化CH4脱除NO   总被引:3,自引:0,他引:3  
对合成的12%CuO/15%TiO2/γ-Al2O3催化剂进行了BET和XRD表征, 并结合等离子体与催化协同脱除NO的反应装置, 考察了单一等离子体、单一催化剂以及等离子体与催化协同脱除NO+CH4+O2的反应结果, 研究了上述三种条件下NO和CH4的转化率. BET表征结果表明, 15%TiO2/γ-Al2O3的孔径分布在微孔和介孔之间; XRD结果表明, 催化剂表面有CuO晶相; 反应活性数据表明, 单一等离子体存在时, NO和CH4的转化率随着等离子体的输入功率增大而逐渐增加, 反应体系引入体积分数为2.5%的O2气促进了NO和CH4的转化; 使用单一催化剂时, NO和CH4的转化率随温度升高而分别增大至30%和20%. 同时NO转化率随O2气浓度的增加先增加后降低, CH4随O2气浓度的增加转化率逐渐增大; 等离子体与催化剂协同作用NO+CH4+O2反应中, NO和CH4的转化率随O2气浓度的增加与只有催化剂存在条件下的变化趋势一致, 但是增大了NO的低温转化率, 同时CH4的转化率提高到了90%.  相似文献   

7.
采用溶胶-凝胶法在较低温度条件下设计合成了新型的具有ABO3型钙钛矿结构的三元金属复合氧化物LaCo0.5Ti0.5O3. 通过TG-DTA, XRD, XPS, UV-Vis DRS等测试技术和可见光光催化活性测试对其进行了表征. 结果表明, 与LaCoO3和La2Ti2O7相比, LaCo0.5Ti0.5O3样品表现出相对较高的可见光光催化活性, 并且合成温度较低. 这是由于原料中的Co2+和Ti4+离子通过电荷补偿作用使产物B位的两种金属均以+3价氧化态分布所致.  相似文献   

8.
采用角分辨飞行时间质谱法研究了355 nm脉冲激光烧蚀LiMn2O4的反应. 在较低激光能量密度(0.8 J·cm-2)测得的离子和中性烧蚀产物主要有Li, O, LiO, LiO2 , Mn, Li2, Li4, Li6, LiMn, MnO, MnO2等. 激光能量密度较大时, 烧蚀产物中的氧化物不仅相对量增加, 而且物种更加丰富. 它们的飞行时间谱可用带质心速度的Maxwell-Boltzmann分布函数拟合. 烧蚀产物Li, LiO, LiO2 和 Mn存在能量密度表观阈值, 并且离子产物的阈值比相应的中性产物高. 烧蚀产物中原生离子和中性产物的空间角分布可用cosn θθ cosθ+(1-δ)cosnθ拟合. 此外, 对355 nm脉冲激光对LiMn2O4的烧蚀机理进行了讨论.  相似文献   

9.
一维纳米结构MnO2的微波合成及其电化学性能   总被引:2,自引:0,他引:2  
以在水热条件下合成的纳米结构γ-MnOOH为前驱物, 以K2S2O8为氧化剂, 采用单模式微波加热法制备出一维纳米结构MnO2. 采用XRD和TEM等手段对样品进行了表征. 以在100 ℃下水热合成的γ-MnOOH纳米纤维为前驱物时, 制得α-MnO2纳米纤维; 以在150 ℃下水热合成的γ-MnOOH纳米棒为前驱物时, 制得β-MnO2纳米棒. 分别用α-MnO2纳米纤维和β-MnO2纳米棒作为Li/MnO2电池的正极材料进行恒电流放电实验, 研究结果显示, α-MnO2纳米纤维的放电容量为270.23 mA·h/g, β-MnO2纳米棒的放电容量为186.66 mA·h/g.  相似文献   

10.
采用水热方法合成了掺铬锂锰氧化合物, X射线衍射和Raman光谱分析结果表明, 所得材料为具有NaFeO2结构的晶体. 由等离子发射光谱(CIP)确定其组分为Li1.06Mn0.8Cr0.14O2. X射线光电子能谱(XPS)研究结果表明, 与未掺杂的LiMnO2相比, 所得材料中Mn的平均价态增加, 这将抑制因Mn3+离子的存在而产生的Jahn-Teller畸变, 有利于提高材料的电化学循环性能.  相似文献   

11.
贯通孔道网络结构大孔Al2O3催化材料的制备   总被引:2,自引:0,他引:2  
采用模板法制备了具有贯通孔道网络结构的大孔Al2O3催化材料. 为确保模板材料的体积分数低于74%时Al2O3孔道的贯通, 设计并实现了模板聚苯乙烯(PS)微球先胶凝再与催化材料Al2O3纳米颗粒复合的制备路线. 通过PS微球悬浮液的流变性表征凝胶状态的形成. 实验结果表明, 加入适当浓度的硝酸铝溶液后PS微球悬浮液出现了由溶胶向凝胶的转变. 通过扫描电镜对大孔Al2O3催化材料的孔道结构进行表征, 结果表明, 与有序大孔材料相比大孔催化材料中孔配位数有所降低, 骨架厚度提高且具有贯通的孔道网络结构. 大孔结构抗压强度实验表明, 随着模板PS微球质量分数的降低, 机械强度明显提高.  相似文献   

12.
通过研究LiNiO2和α-LiAlO2的制备条件,合成出LiNi1-xAlxO2(x=0~0.6)材料.XRD和XPS测试结果表明,各样品均具有α-NaFeO2型单相结构,并形成LiNi1-xAlxO2固溶体.随着Al固溶量x的增加,材料Ni(Al)—O结合能增加,晶胞的a轴缩短,c/a比增大,层状属性更加明显,结构稳定性增强.烧结实验结果表明,在低Al固溶量时,材料的合成需要在氧气气氛中进行,Al掺杂能够抑制结构中的Li缺位,降低材料形成温度及其在合成过程中对氧气的依赖程度.  相似文献   

13.
采用湿化学法合成了前驱物ZrMo2O7(OH)2(H2O)2, 并用SEM观察了不同回流时间所得晶粒形貌, 结果显示经过较短时间的回流(12 h)就能获得一定尺寸的晶粒并趋于稳定.观察了不同回流温度所得前驱物晶粒形貌, 其晶粒呈长方体棒状形态, XRD结果证明结晶度随回流温度的升高而提高; 探讨了不同回流温度下所获得的前驱物ZrMo2O7(OH)2(H2O)2对合成立方ZrMo2O8的影响.结果表明, 100 ℃回流所得前驱物经热处理后可获得纯立方相ZrMo2O8.此外, 对前驱物的热处理温度选择在400 ℃左右有利于纯立方相的获得.  相似文献   

14.
采用水合前驱物分解的方法, 以钨酸铵、钼酸铵及硝酸氧锆为原料制备了不同形貌的ZrWMoO8粉体. 对其前驱体进行了热重-差热分析(TG-DSC), 并以X射线粉末衍射(XRD)、扫描电子显微镜(SEM)及X射线荧光光谱仪(XRF)等手段考察了不同胶凝剂(HCl, HClO4, HNO3, H2SO4及H3PO4)对产物结构和形貌的影响. 结果表明, 胶凝剂的选择对ZrWMoO8粉体的形貌有较大影响. 在100—700 ℃范围内, 以HCl为胶凝剂制备出来的立方相ZrWMoO8粉体的热膨胀系数为-3.84×10-6 K-1.  相似文献   

15.
氮掺杂二氧化钛粉体(TiO2-xNx)的制备与性能表征   总被引:4,自引:0,他引:4       下载免费PDF全文
采用硫酸法生产钛白粉的中间产物偏钛酸为原料, 利用盐酸溶解-氨水中和沉淀法制得前驱体水合二氧化钛, 再在氨氩气氛的管式炉中进行掺氮反应, 制备出了具有可见光活性的纳米TiO2-xNxx粉体. 重点讨论了反应温度与反应时间对纳米TiO2-xNxx粉体的粒径、晶型及掺氮量的影响, 并研究了TiO2-xNx粉体的吸光性能和光催化性能.  相似文献   

16.
以过渡金属乙酸盐和氢氧化锂为原料, 应用共沉淀或流变相预处理高温烧结法优化并制备出LiNi0.4Co0.2Mn0.4O2正极材料. X射线衍射技术(XRD)及Rietveld结构精修、扫描电子显微技术(SEM)、综合热分析(TG-DSC)表征结果和电化学测试结果表明, 该材料具有单一层状结构, 颗粒大小均匀, 热稳定性好, 首次放电比容量高达208.7 mA·h/g(2.0-4.6V, 0.1 C), 电化学性能优异. 非原位(ex situ)XRD测定结果表明, 材料充至高电位下发生的不可逆相变造成了材料的循环容量衰减.  相似文献   

17.
以Bi(NO3)3·5H2O和Ti(OC4H9)4为原料,采用自组装单层膜技术,在负载有功能化三氯十八烷基硅烷(octadecyl-trichloro-silane,OTS)的FTO基板上制备了Bi2Ti2O7 薄膜。基板表面的亲水性测试表明,紫外照射使OTS自组装单层膜表面由疏水转变为亲水,实现功能化。借助X射线衍射(XRD)、X射线能量色散谱(EDS)、扫描电子显微镜(SEM)和原子力显微镜(AFM)分析分别对Bi2Ti2O7薄膜的组成、结构和微观形貌进行了表征。结果表明,沉积溶液浓度为0.02 mol·L-1时,所得Bi2Ti2O7薄膜均匀致密。560 ℃热处理1 h、厚度为0.4 μm的Bi2Ti2O7薄膜在100 kHz的介电常数为153,介电损耗为0.089。  相似文献   

18.
采用共沉淀法制备了NiO-La0.3Ce0.7O2-δ(LDC30)新型阳极材料, 通过对其配方与性能的研究, 探索获得中温SOFC高性能阳极材料的新途径.  相似文献   

19.
分别利用微乳液水热法和酸蒸气水热法合成了杂多蓝化合物ZrW1.7ⅥW0.3ⅤO7H0.3(OH)2·2H2O.XRD测定结果表明,该化合物与ZrMo2O7(OH)2·2H2O具有相同晶体结构类型.使用Rietveld方法对产物进行了结构精修,并计算出了键参数和键价.运用EPR技术测定了该化合物中W的价态,并利用XPS能谱测定了W/W的比例.利用价键和规则,指出ZrW1.7ⅥW0.3ⅤO7H0.3(OH)2·2H2O中的W—O3—H0.15存在羟基化现象,并对杂多蓝化合物的红外吸收光谱进行了指认.  相似文献   

20.
合成具有单相正交钙钛矿结构的La1-xSrxCuO3-δ(x=0.15, 0.2, 0.3, 0.4)系列样品, 碘量滴定法实验结果表明, 随着Sr掺入量的增加, Cu3+离子的含量逐渐增加. 电学性能研究结果表明, La0.7Sr0.3CuO3-δ电导率最高, 与La0.6Sr0.4CoO3-δ相比, La0.7Sr0.3CuO3-δ具有更好的电化学性能, 可作为一种新的中温固体氧化物燃料电池(IT-SOFC)阴极材料. 将La0.7Sr0.3CuO3-δ与不同质量比的中温电解质Ce0.85Sm0.15O2-δ(SDC) 固相混合, 制备复合阴极材料, 电化学性能测试结果表明, 掺入适量的SDC有利于降低La0.7Sr0.3CuO3-δ电极的极化, 获得性能更优越的IT-SOFC阴极材料, 提高在中温区单电池的输出功率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号