首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we use dipping and spinning methods to coat glass slides with sol-gel ZnO thin films, composed of zinc acetate dihydrate, monoethanolamine (MEA), de-ionized water and isopropanol. The effect of the annealing temperature on the structural morphology and optical properties of these films is investigated. These ZnO films were preheated at 275 °C for 10 min and annealed either at 350, 450 or 550 °C for 60 min. As-deposited films, formed by amorphous zinc oxide-acetate submicron particles, are transformed into a highly-oriented ZnO after thermal treatment. The surface morphology, phase structure and optical properties of the thin films were investigated by scanning electron microscopy, X-ray diffraction (XRD) and optical transmittance. Both techniques produced nanostructured ZnO thin films with well-defined orientation. The annealed films were transparent in the visible range with an absorption edge at about 375 nm and a transmittance of ca 85–90% with an average diameter of 40 nm. XRD results show the film was composed of polycrystalline wurtzite, with a preferential c-axis orientation of (002) and a single sharp XRD peak at 34.40, corresponding to the hexagonal ZnO. The grain size is increased by the annealing temperature. Both coating techniques create sol-gel ZnO films with the potential for application as transparent electrodes in optic and electronic devices.  相似文献   

2.
The effect of post‐deposition annealing on surface morphology and gas sensing properties of palladium phthalocyanine (PdPc) nanostructured thin films has been studied. PdPc thin films were deposited on polyborosilicate substrate by thermal evaporation technique at room temperature. The surface morphology of thin films was investigated by SEM, X‐ray diffraction, and optical absorption. X‐ray diffraction patterns showed a phase transition from α to β based on post‐deposition annealing at temperatures above 200 °C. The SEM and optical absorption confirmed that annealing strongly influenced the surface morphology of nanostructured thin films. Sandwich devices (Au|PdPc|Al) were fabricated and exposed to different concentrations of NO2 and NH3 as oxidizing and reducing gases at different temperatures, and the sensitivity of devices were obtained versus gases. Obtained results showed α‐PdPc thin film devices had higher sensitivity in comparison with devices in β‐phase. In particular, it was found that the sensitivity of devices is temperature dependent and the best operating temperature range of devices was measured at about 90–100 °C. Devices showed good reversibility, response, and recovery time at room temperature. Finally, the stability of sensors was investigated for a period of about 1 year; results showed that the sensors were stable for 2 months and lost about 30% of their sensitivity after 1 year. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of the sublimation rate of di-p-xylylene on the crystallinity and morphology of Parylene N deposited on stainless steel was studied as a function of substrate temperature. For a given rate of dimer sublimation, the deposition rate increases with decreasing substrate temperature. Increasing the sublimation rate of the dimer increases the deposition rate 10-fold, decreases the crystallinity, and shifts the appearance of the hexagonal β structure towards higher substrate temperature for samples synthesized from room temperature (RT) to ?60°C. Solution annealing resulting from solvent extraction, and isothermal annealing, increase the crystallinity of the polymers and result in structures containing both α and β polymorphs. The surface topology, as revealed by scanning electron microscopy (SEM), for polymers synthesized from RT to ?40°C shows a globular structure, whereas low temperature samples exhibit a rod-type morphology. For higher sublimation rates of the dimer, SEM micrographs show that oligomeric species start appearing on the polymer films after a period of 4–5 days. Solvent extraction removes the oligomeric crystals, and GPC analysis of the resulting extract indicates that most of the oligomers range in molecular weight from 100 to 900. The cross-sectional morphology for fractured low temperature samples, however, reveals different morphologies as polymerization proceeds. It is postulated that in the temperature range ?50 to ?78°C, both surface condensation and surface adsorption of monomer occurs, leading to different morphologies and lower crystallinity. The polymer synthesized at liquid nitrogen temperature shows the presence of voids along with different morphologies. X-ray diffractograms of polymers synthesized at liquid nitrogen reveal a considerable amount of amorphous phase in the films. Hence, it is inferred that, although the liquid nitrogen polymerization is a solid state polymerization of the crystalline monomer, it does not lead to 100% crystalline material, and the reasons for this are discussed.  相似文献   

4.
Films based on poly(p-phenylenevinylene) are prepared by pyrolitic polymerization of α,α′-dichloro-p-xylene. During monomer precipitation, the temperature on a substrate is 25, 50, or ?196°C. Subsequent annealing of the precursor at 250°C yields the final product: the copolymer of p-phenylenevinylene and p-xylylene with an approximate composition of 4: 1. The surface morphology, structure, and optical characteristics of the polymer are studied. The mean-square surface roughness of the precursor is 5 nm. Thermal treatment increase the samples’ roughness up to 10 nm. When the precursor is transformed into poly(p-phenylenevinylene), the roughness coefficient decreases from 0.85 ± 0.05 to 0.74 ± 0.05 owing to the formation of a rougher surface. Characterization of the optical characteristics of the synthesized poly(p-phenylenevinylene) shows that the maximum effective conjugation chain length achieves 12 units in the copolymer prepared when the temperature on the substrate is ?196°C. As the temperature on the substrate increases, the conjugation length decreases to 8 units upon precipitation. Luminescence analysis reveals the effective excitation-energy transfer from short chain fragments of poly(p-phenylenevinylene) to long chain fragments. Electron parameters of the material are estimated: i.e., the band gap, the Huang-Rhys factor, the Stokes shift, and the oscillation energy of molecules.  相似文献   

5.
The morphology of poly(p-xylylene) ultrathin films prepared by vapor deposition polymerization on the surface of single-crystal silicon (100) and on the cleaved surface of mica at a substrate temperature of 20°C has been studied by atomic force microscopy. At the initial stage, the growth of the poly(p-xylylene) coating follows the island mechanism. Within the framework of pyramidal model of island growth, the mean diffusion length for monomer p-xylylene is calculated: For the single-crystal silicon, this parameter is 15 ± 3 nm; for the cleaved surface of mica, 9 ± 2 nm. The nature of the substrate and defects on its surface show a peculiar effect on the structure of the poly(p-xylylene) coating. Thus, at a low monomer flow, nucleation of polymer islands on the surface of silicon is predominantly homogeneous, whereas on the cleaved surface of mica, it is heterogeneous. A change in the monomer flow significantly affects the rate of nucleation of polymer islands.  相似文献   

6.
Surface morphology of bisphenol‐A polycarbonate (BAPC) thin films, with thickness ranging from 30 to 1000 nm on silicon substrates was studied by atomic force microscopy. The films were prepared by spincasting from 1,2‐dichloroethane solutions of 0.25–5.0 wt % BAPC. Even though longer annealing than 250 h was necessary for complete crystallization for bulk BAPC, high crystallinity was observed for 30 nm thick film after annealing at 200 °C for 48 h in vacuum. Positron annihilation lifetime spectroscopy measurements showed that the free volume hole size in 30 nm thick film was larger than that of bulk at 200 °C. Comparison of the BAPC concentration in the precursor solution with the overlap concentration suggests that the high crystallinity of the 30 nm BAPC film is due to less entangled chains caused by rapid removal of the solvent from the dilute solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

7.
The surface structure of thin films based on poly[4,4′-bis(4″-N-phenoxy)diphenyl]amic acid of 1,3-bis(3′,4-dicarboxyphenoxy)benzene and the product of its thermal imidization—a semicrystalline polyimide—poly[4,4′-bis(4″-N-phenoxy)diphenyl]imide of 1,3-bis(3′,4-dicarboxyphenoxy)benzene—at various stges of thermal imidization and after melting and subsequent annealing has been studied by methods of transmission, scanning electron, and atomic force microscopies. The topological structure of the film surface has been described in terms of the discrete cluster model. Under heating to 200 and 280°C, a continuous network of the infinite cluster appears; subsequent annealing leads to disintegration of the network to discrete fragments that practically correspond to clusters in the starting poly(amic acid) film. The polyimide film heated to 280°C crystallizes in the form of needle crystals stable to the argon plasma. The surface morphology of polyimide films recrystallized from melt is of the spherulite character.  相似文献   

8.
乔从德 《高分子科学》2013,31(9):1321-1328
The melting and crystallization behaviors of poly(ε-caprolactone) (PCL) ultra-thin films with thickness from 15 nm to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that melting can erase the spherulitic structure for polymer film with high thickness. However, annealing above the melting point can not completely erase the tree-like structure for the thinner polymer film. Generally, the structure formation of thin polymer films of PCL is controlled not only by melting and crystallization but also by dewetting during thermal annealing procedures, and dewetting predominates in the structure formation of ultra-thin films. However, the presence of tree-like morphology at 75 °C may be due to the strong interaction between PCL and mica surface, which may stick the PCL chains onto the mica surface during thermal annealing process. Moreover, the growth of the dendrites was investigated and it was found that crystallization is followed from a dewetted sample, and the branches did not grow with the stems. The crystallization of polymer in the ultra-thin films is a diffusion-controlled process. Both melting and crystallization behaviors of PCL in thin films are influenced by film thickness.  相似文献   

9.
In the present investigation, we have synthesized a polypyrrole films by chemical polymerization technique for the development of ammonia sensor. The polypyrrole films were synthesized in an aqueous acidic medium on glass substrate with mild oxidation of ferric chloride at temperature 29°C. The concentrations (molar) of monomer (pyrrole), oxidant (ferric chloride), and dopant (polyvinyl sulfonate) have been optimized for the uniform and porous surface morphology of the synthesized polypyrrole film. The synthesized films were characterized by scanning electron microscopy, ultraviolet‐visible, and Fourier transforms infrared spectroscopy. Ammonia gas sensing behavior of polypyrrole films was studied by using indigenously developed gas sensing chamber. The synthesized polypyrrole film with optimized process parameters shows excellent and reproducible response to low concentration (100 ppm) of ammonia gas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Nanostructured titanium dioxide films have been reported to be used in many applications ranging from optics and solar energy devices to gas sensors. This work describes the synthesis of nanocrystalline titania films via an aqueous solution-gel method. The thin films are deposited by spin coating an aqueous citratoperoxo-Ti(IV)-precursor solution onto a silicon substrate. The influence of processing parameters like Ti4+ concentration and crystallization temperature on the phase formation, crystallite size and surface morphology of the films is studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Furthermore, the effect of successive layer deposition on the film thickness of the resulting films is studied by means of cross sectional SEM. SEM and TEM micrographs clearly show that, after optimization of the process parameters, thin, smooth, dense nanocrystalline films are synthesized in a reproducible manner. The films are composed of 15–20 nm grains. At higher crystallization temperatures (600, 650°C) also larger particles (40–70 nm) are present. XRD data reveal that a phase pure anatase film is formed at 450°C. Crystallization temperatures equal to or higher than 600 °C however give rise to the formation of both the anatase and rutile crystalline phases. The smoothness of the films is proved by their very low rms surface roughness (≤1.1 nm) measured by AFM.  相似文献   

11.
Thin films of cobalt (10, 40, and 100 nm) are deposited on Si substrate by electron beam physical vapor deposition technique. After deposition, 4 pieces from each of the wafers of silicon substrate were cut and annealed at a temperature of 200°C, 300°C, and 400°C for 2 hours each, separately. X‐ray diffraction, atomic force microscopy, and transmission electron microscopy (TEM) are used to study the structural and morphological characteristics of the deposited films. To obtain TEM images, Co films are deposited on Cu grids; so far, no such types of TEM images of Co films are reported. Structural studies confirm nanocrystalline nature with hexagonal close packed structure of the deposited Co film at lower thickness, while at higher thickness, film structure transforms to amorphous with lower surface roughness value. The particle sizes in all the cases are in the range of 3 to 5 nm. Micro‐Raman spectroscopy is also used to study the phase formation and chemical composition as a function of thickness and temperature. The results confirm that the grown films are of good quality and free from any impurity. Studies show the silicide formation at the interface during deposition. The appearance of new band at 1550 cm−1 as a result of annealing indicates the structural transformation from CoSi to CoSi2, which further enhances at higher annealing temperatures.  相似文献   

12.
We describe the synthesis and cationic photopolymerization of a C60 derivative bearing a 2,4,6‐tris(epoxynonyloxy)phenyl moiety (FB9ox). Rheological analysis of monomer indicates that temperature of 130 °C yields sufficiently low viscosity for polymerization. A thin film of the liquid monomer has been cationically photopolymerized with a photoinitiator system of curcumin and p‐(octyloxyphenyl)phenyliodonium hexafluoroantimonate, which harvests 424 nm light instead of commonly used ultraviolet light. The degree of polymerization was determined with ATR‐IR. The reaction is the first recorded photopolymerization of a fullerene derivative thin film. The polymer exhibits good mechanical and chemical stabilities. The polymerization can also be achieved by annealing at 150 °C without illumination, but with a smaller degree of polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5194–5201, 2008  相似文献   

13.
Single‐bi‐layer of Ni–Ti thin film was deposited using DC and RF magnetron sputtering technique by layer‐wise deposition of Ni and Ti on Si(100) substrate in the order of Ni as the bottom layer and Ti as the top layer. The deposition of these amorphous as‐deposited thin films was followed by annealing at 300 °C, 400 °C, 500 °C, and 600 °C temperature with 1‐h annealing time for each to achieve crystalline thin films. This paper describes the fabrication processes and the novel characterization techniques of the as‐deposited as well as the annealed thin films. Microstructures were analysed using FESEM and HRTEM. Nano‐indentation and AFM were carried out to characterize the mechanical properties and surface profiles of the films. It was found that, for the annealing temperatures of 300 °C to 600 °C, the increase in annealing temperature resulted in gradual increase in atomic‐cluster coarsening with improved ad‐atom mobility. Phase analyses, performed by GIXRD, showed the development of silicide phases and intermetallic compounds. Cross‐sectional micrographs exhibited the inter‐diffusion between the two‐layer constituents, especially at higher temperatures, which resulted either in amorphization or in crystallization after annealing at temperatures above 400 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of annealing on the self-organized morphology and component gradient distribution of films prepared from bimodal latexes blend containing 1:1 silicon-containing acrylate copolymer/silicon-free acrylate copolymer blend was studied using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy with X-ray energy-dispersive (SEM-EDX) spectrometry, and atomic force microscopy (AFM). The distribution of silicon through the whole thickness of the film as a function of annealing was investigated using confocal Raman spectroscopy (CRS). AFM results show that poly(methyl methacrylate-co-n-butyl acrylate) latex fuses to form a continuous film at 25?°C. The wettability of the acrylate components and the heterogeneous composition of poly(3-[tris(trimethylsilyloxy)silyl] propyl methacrylate-co-methyl methacrylate) result in a graded block film. ATR-FTIR and SEM-EDX measurements reveal silicon-containing components segregate at the film–air interface upon annealing. CRS further shows that the nonlinear model gradient distribution of silicon is obtained, where the content of silicon component is enhanced and it gradually varies in the bulk. When the annealing temperature increases to 120 and 180?°C, blend latexes films demonstrate varying topography and phase images, indicating phase separation is induced by annealing. Furthermore, CRS implies that the destruction of the gradient structure is attributed to the phase separation of the two blend components.  相似文献   

15.
Sawada  Y.  Seki  S.  Sano  M.  Miyabayashi  N.  Ninomiya  K.  Iwasawa  A.  Tsugoshi  T.  Ozao  R.  Nishimoto  Y. 《Journal of Thermal Analysis and Calorimetry》2004,77(3):751-757
Tin-doped indium oxide In2O3 (indium-tin-oxide) transparent conducting films were fabricated on silicon substrates by a dip coating process. The thermal analysis of the ITO films was executed by temperature-programmed desorption (TPD) or thermal desorption spectroscopy (TDS) in high vacuum. Gas evolution from the ITO film mainly consisted of water vapor. The total amount of evolved water vapor increased on increasing the film thickness from approx. 25 to 250 nm and decreased by increasing the preparation temperature from 365 to 600°C and by annealing at the same temperature for extra 10 h. The evolution occurred via two steps; the peak temperatures for 250 nm thick films were approx. 100-120 and 205-215°C. The 25 nm thick films evolved water vapor at much higher temperatures; a shoulder at approx. 150-165°C and a peak at approx. 242°C were observed. The evolution temperatures increased by increasing the preparation and the annealing temperatures except in case of the second peak of the 25 nm thick films. The evolution of water vapor at high temperature was tentatively attributed to thermal decomposition of indium hydroxide, In(OH)3, formed on the surface of the nm-sized ITO particles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Crystal structure and morphology undergo significant evolution in thin films of tin(II) sulfide prepared by chemical deposition, over a narrow interval of bath temperature of 20–40 °C, but has not been recognized in previous studies. The chemical bath is constituted using tin(II) chloride, triethanolamine, ammonia(aq.) and thioacetamide. At bath temperature of 20 °C, the deposition rate of the film is 10 nm/h; and at 24 h, a film of thickness 260 nm is obtained. This film is compact and with a predominantly cubic (Cub-) crystalline structure. At 40 °C, the deposition rate is 25 nm/h, and a film of 600 nm in thickness is deposited in 24 h. However, this film has evolved into vertically stacked platelets of orthorhombic (OR-) crystalline structure. The transition from compact-to-platelet morphology as well as from Cub-to-OR-crystalline structure is observed near a deposition temperature, 35 °C. The Cub-SnS has a characteristic high optical band gap, 1.67 eV (direct gap; forbidden transitions) with an electrical conductivity, 10−7(Ω cm)−1; both properties being un-affected when films are heated at 300 °C in a nitrogen ambient. In OR-SnS, the band gap is 1.1 eV (indirect gap; allowed transitions). The electrical conductivity of such films is notably higher, 10−4 (Ω cm)−1, which increases further by an order of magnitude when the films have been heated at 300 °C in nitrogen.  相似文献   

17.
Nanocomposite ZnO–Ag thin film containing nano-sized Ag particles have been grown on glass substrate by spin-coating technique using zinc acetate dihydrate as starting precursor in 2-propanol as solvent and monoethanolamine as stabilizer. Silver nanoparticles were added in the ZnO sol using silver nitrate dissolved in ethanol-acetonitrile. Their structural, electrical, crystalline size and optical properties were investigated as a function of preheating, annealing temperature and silver content. The results indicated that the crystalline phase was increased with increase of annealing temperature up to 550 °C at optimum preheating temperature of 275 °C. Thermal gravimetric differential thermal analysis results indicated that the decomposition of pure ZnO and nanocomposite ZnO–Ag precursors occurred at 225 and 234 °C, respectively with formation of ZnO wurtzite crystals. The scanning electron microscopy and atomic force microscopy revealed that the surface structure (the porosity and grain size) of the ZnO–Ag thin film (the film thickness is about 379 nm) was changed compared to pure ZnO thin film. The result of transmission electron microscopy showed that Ag particles were about 5 nm and ZnO particles 58 nm with uniform silver nanoclusters. Optical absorption results indicated that optical absorption of ZnO–Ag thin films decreased with increase of annealing temperature. Nanocomposite ZnO–Ag thin films with [Ag] = 0.068 M and [Ag] = 0.110 M showed an intense absorption band, whose maximum signals appear at 430 nm which is not present in pure ZnO thin films. The result of X-ray photoelectron spectroscopy revealed that the binding energy of Ag 3d5/2 for ZnO–Ag shifts remarkably to the lower binding energy compared to the pure metallic Ag due to the interaction between Ag and ZnO.  相似文献   

18.
Among the various semiconducting metal oxide materials, ZnO thin films are highly attractive in the development of materials area. In this paper, Al-doped ZnO thin films were prepared by sol–gel dipping and drawing technology and their composition, structure and optical–electrical properties were investigated. XRD results shows that the Al-doped ZnO thin film is of polycrystalline hexagonal wurtzite structure, and the (002) face of the thin film has the strongest orientation at the annealing temperature of 550 °C. The surface resistance of Al-doped ZnO thin film firstly drops and then increases with the increase in annealing temperature. Al doping concentration is also an important factor for improving the conductivity of modified ZnO thin films, and the surface resistance has the tendency to drop at first and then to increase when the Al concentration is increasing. The surface resistance of modified ZnO thin films drops to the lowest point of 139 KΩ sq?1 when the Al concentration is 1.6 at% and the annealing temperature is 500 °C. The light transmission measurements show that the doping concentration has little influence on light transmittance. The transmittance at the visible region of films is all over 80 %, and the highest value is up to 91 %.  相似文献   

19.
By electron beam evaporation and RF magnetron sputtering 500 nm thick niobium films were deposited on thermally oxidized Si-(100)-wafers and by RF magnetron sputtering on monocrystalline sapphire-(1-102)-wafers. Investigations by scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed differences of the film morphology depending on the substrate used: films deposited on SiO2 exhibited an even surface with small crystallites, films on sapphire showed parallel surface structures with relatively large and well-shaped crystallites pointing at regular crystal growth influenced by the substrate. These differences in film morphology were also reflected in different reflection intensities of the films in XRD patterns, indicating that the films deposited on sapphire were strongly textured. In a first set of experiments nitridation in molecular nitrogen and ammonia was investigated. In a second set of experiments, it was tried to form oxynitrides of niobium by annealing the nitrided films in molecular oxygen. Particularly by X-ray-diffraction the formation of different nitride and oxide phases in dependence of the reaction temperature was examined. Further, elemental depth profiles were recorded by secondary ion mass spectrometry (SIMS) to track the position of the phases formed in the film. The different substrates led to disparate film reactivities, resulting in different nitridation grades of the films at similar reaction temperatures. In general, larger crystallite sizes resulted in less chemical reactivity of the films: even after nitridation at 1000 °C metallic niobium was still present in films deposited on sapphire. However, no evidence was obtained for the formation of oxynitrides by the process sequence observed.  相似文献   

20.
Low temperature lithium titanate compounds (i.e., Li4Ti5O12 and Li2TiO3) with nanocrystalline and mesoporous structure were prepared by a straightforward aqueous particulate sol–gel route. The effect of Li:Ti molar ratio was studied on crystallisation behaviour of lithium titanates. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders were crystallised at the low temperature of 500 °C and the short annealing time of 1 h. Moreover, it was found that Li:Ti molar ratio and annealing temperature influence the preferable orientation growth of the lithium titanate compounds. Transmission electron microscope (TEM) images showed that the average crystallite size of the powders annealed at 400 °C was in the range 2–4 nm and a gradual increase occurred up to 10 nm by heat treatment at 800 °C. Field emission scanning electron microscope (FE-SEM) analysis revealed that the deposited thin films had mesoporous and nanocrystalline structure with the average grain size of 21–28 nm at 600 °C and 49–62 nm at 800 °C depending upon the Li:Ti molar ratio. Moreover, atomic force microscope (AFM) images confirmed that the lithium titanate films had columnar like morphology at 600 °C, whereas they showed hill-valley like morphology at 800 °C. Based on Brunauer–Emmett–Taylor (BET) analysis, the synthesized powders showed mesoporous structure containing pores with needle and plate shapes. The surface area of the powders was enhanced by increasing Li:Ti molar ratio and reached as high as 77 m2/g for the ratio of Li:Ti = 75:25 at 500 °C. This is one of the smallest crystallite size and the highest surface areas reported in the literature, and the materials could be used in many applications such as rechargeable lithium batteries and tritium breeding materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号