首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过添加不同烧结助剂(Lu2O3、Y2O3和Al2O3)及β-Si3N4粉末含量,采用常压烧结工艺制备出性能优异的多孔氮化硅陶瓷.研究了烧结助剂种类及β-Si3N4添加量对多孔氮化硅陶瓷物相、微观组织和力学性能的影响.结果表明:当Lu2O3添加量为5 wt;、β-Si3N4为3 wt;时,制备了由长柱状β-Si3N4晶粒组成、平均长径比为6.87、直径为0.6μm长度为4.4~10.4 μm的多孔氮化硅陶瓷,其抗弯强度可达330.7 MPa.β-Si3N4添加量至5 wt;时,柱状晶粒发育良好,长径比增加至7以上,气孔率高达48;,但抗弯强度下降.  相似文献   

2.
以不同C/SiO2的碳化稻壳为硅源、碳源和成孔剂,添加α-Si3N4和少量烧结助剂,利用碳热还原氮化法原位制备多孔氮化硅陶瓷,研究了不同C/SiO2和烧结温度对多孔陶瓷相组成、显气孔率、抗弯强度和微观结构等性能的影响.结果表明:当选用碳化稻壳C/SiO2(质量比)为0.5和0.7时,在1450 ~ 1500℃的试样中有α-Si3N4和β-Si3N4,在1550℃的试样中只有β-Si3N4.C/SiO2为0.7、1450~1550℃下制备出多孔氮化硅陶瓷,其气孔率为52.53; ~38.48;,抗弯强度为44.07~83.40MPa;1550℃制备的多孔β-Si3N4陶瓷中孔隙分布均匀,孔径约为2μm,β-Si3N4呈团簇状生长,长径比约为6~8.  相似文献   

3.
本论文通过对β-Si3N4粉末的加入量、烧结助剂的种类及煅烧温度等参数的合理选择及优化,达到对β-Si3N4晶粒尺寸和形貌的有效控制,并探讨分析β -Si3N4晶种的反应机理.以MgO、Y2O3及SiO2为助烧剂,加入一定量的β-Si3N4粉末,通过对原始α-Si3N4粉末进行热处理,经去除掉玻璃相等漂洗工艺后,制备出相变充分、具有柱状形貌β-Si3N4晶种.重点研究了β-Si3N4粉末加入量及助烧剂种类对Si3N4相变、晶体形貌及晶粒尺寸分布的影响.研究结果表明:β-Si3N4粉末添加量10 wt;、MgO添加量5wt;时,在1750℃下热处理1.5h能得到具有比较理想长径比、缺陷少且晶粒尺寸与长径比分布较均匀β-Si3N4品种,平均长径比接近于7.0.  相似文献   

4.
本研究中,以石油焦为造孔剂、Y2O3-Al2O3为烧结助剂,通过注浆成型制备出多孔氮化硅陶瓷.研究石油焦的加入量对多孔氮化硅陶瓷微观结构、力学性能及气体透气性的影响.结果表明:多孔氮化硅陶瓷的微孔是由长棒状的β-Si3N4晶粒互相搭接而成,大孔是由石油焦燃烧而成.随着石油焦加入量的增加,气孔率及达西渗透系数(μ)增大,但试样的抗弯强度降低.在起始α-Si3N4粉末中添加10wt;~50wt;石油焦、5wt; Y2O3-3wt;Al2O3 1800℃下保温2h制备出气孔率为37.08;~59.40;、抗弯强度为52.00~154.27 MPa、μ值为(3.04 ~6.87)×10-13m2的多孔氮化硅陶瓷.  相似文献   

5.
本文以氮化硅,氮化硼,二氧化硅作为陶瓷基体材料,通过淀粉固结工艺,采用常压部分氧化烧结制备了氮化硅基多孔陶瓷。通过Zeta电位测试确定了制备陶瓷坯体的最佳pH值在9.42~10.76之间。混合浆料的浆料流变性能测试表明陶瓷浆料体系呈现剪切变稀特征。XRD分析结果表明在烧结样品组成成分为α-Si3N4、β-Si3N4、BN、Quartz low,sys以及Moganite。SEM的显示氮化硅基多孔陶瓷呈现片层型微观结构。显气孔率随淀粉含量增加而增加,试验制得多孔陶瓷显气孔率最大值高达73.2%。  相似文献   

6.
以Yb2O3-Al2O3体系为烧结助剂,采用气压烧结法制备了氮化硅陶瓷.研究了烧结温度对气压烧结氮化硅陶瓷的致密度、失重率、物相、力学性能与显微结构的影响及材料的烧结机理.结果表明:随着烧结温度的升高,氮化硅的致密度、抗弯强度、断裂韧性和硬度均呈现先增加后降低的趋势,而失重率呈现一直升高的趋势;当烧结温度为1780℃、烧结气压为6 MPa时,所得氮化硅烧结体的体积密度(3.31 g·cm-3)、抗弯强度(967.2)、断裂韧性(8.9 MPa·m1/2)和硬度(17.1 GPa)达最大值,晶粒以长柱状的β相为主;烧结温度高于或等于1700℃时,材料中的α相可完全转化为β相,β-Si3 N4晶粒的平均长径比达12.31.  相似文献   

7.
刘聪  郭伟明  赵哲  伍尚华 《人工晶体学报》2017,46(12):2352-2355
以α-Si3N4粉为原料,通过添加不同含量的Y2O3-Al2O3烧结助剂(6wt;、8wt;和10wt;),在1800℃下采用热压烧结制备了Si3 N4陶瓷,研究了Y2 O3-Al2 O3含量对Si3 N4陶瓷的物相、致密度、显微结构与力学性能的影响,结果表明:添加6wt;的Y2 O3-Al2 O3助剂即可获得高致密的Si3 N4陶瓷,继续增加助剂含量对Si3 N4陶瓷的致密度影响不大,但是显著影响 α-Si3 N4相和β-Si3 N4相的含量,较高的Y2 O3-Al2 O3助剂含量有利于α-Si3 N4转化为β-Si3 N4.不依赖于Y2 O3-Al2 O3助剂含量,Si3 N4陶瓷均包含细小的等轴晶粒和大尺寸的棒状晶粒,呈现双峰结构,但是Y2 O3-Al2 O3助剂含量增加到10wt;时,可以显著增加棒状晶粒的数量,形成更显著的双峰结构.基于当前研究,发现加入低含量的Y2O3-Al2O3助剂(6wt;),可以获得高硬度高强度的Si3N4陶瓷,而引入高含量的Y2O3-Al2O3助剂(10wt;),则可以获得高韧性高强度的Si3N4陶瓷.  相似文献   

8.
碳热还原氮化法制备β-Sialon粉体的研究   总被引:3,自引:0,他引:3  
采用山西大同土为主要原料,利用碳热还原氮化法(CRN)制备了β-Sialon材料,并利用SEM、XRD等检测手段对其进行了检测分析.研究了温度、N2流量、保温时间以及配碳量等因素对制备β-Sialon的影响,采用正交设计的方法确定了反应的最佳工艺参数,并在此基础上讨论了α-Si3N4晶种对生成产物的影响.实验结果表明,烧结温度为1500℃,氮气流量为1 L/min,保温时间为2 h,配碳量为0.8化学计量时可以生成较多的β-Sialon相.SEM微观形貌表明具有一定长径比的β-Sialon柱状晶呈均匀分布.此外,加入3;的晶种α-3N4可促使晶粒大小均匀并获得高品质细密结构的粉体.  相似文献   

9.
以微米级SiC和Si粉为原料,采用冰模板法和氮化反应烧结法制备了孔道中修饰α-Si3N4、Si2N2O纳米线的β-Si3N4结合多孔SiC复相陶瓷.研究了反应烧结温度、SiC/Si比和固相含量对多孔陶瓷的物相结构、形貌、孔分布和压缩强度的影响.结果表明:多孔陶瓷具有层状定向通孔结构,孔隙率介于50; ~ 70;之间,孔径分布呈现双峰分布特点;当烧结温度达到1350℃以上时,在层状孔道中交织形成α-Si3N4和Si2N2O纳米线的网络结构.反应温度超过1450℃时,通过液态Si的氮化反应原位形成β-Si3N4结合相将SiC颗粒粘结起来;当浆料中Si含量由16wt;增加至33wt;时,多孔陶瓷的开气孔率从69.78;降至62.64;,而压缩强度由2.2 MPa提高到8.73 MPa;随着浆料固相体积含量从25;增加到45;,多孔陶瓷的气孔率从71.81;降至54.85;,同时压缩强度从4.99 MPa提高到24.16 MPa.  相似文献   

10.
以α-氮化硅粉为原料,坎烯为溶剂,氧化钇和氧化铝为烧结助剂,室温下利用冷冻注模法制备出多孔氮化硅陶瓷.研究了固相含量(坎烯含量)、干燥方式及粘结剂对生坯性能的影响,以及对烧结制备出的氮化硅孔隙率、力学性能和微观结构的影响.研究结果表明:固相含量过低会导致升华后坯体强度过低而坍塌,过高则无法获得多孔结构.坯体置于真空环境下干燥能有效加快其升华速度,避免坯体开裂.选用聚苯乙烯(PS)作为粘结剂制备的生坯效果较好.通过烧结制备试样的主晶相为β-Si3 N4相,以莰烯为溶剂获得的氮化硅陶瓷展现出了内部联通的多孔结构,而且是树枝状的坎烯"手臂".烧成后试样的线收缩率随着固相含量的增加而减小,当固相含量由10vol;升高到25vol;时,试样的开气孔率由82.13;降低到62.09;,而密度却由0.5698 g/cm3升高到1.2603 g/cm3,相应的三点弯曲强度由3.933 MPa增加到14.421 MPa,硬度由393.5 kg·mm-2上升至1288.3 kg·mm-2.  相似文献   

11.
在高温高压条件下(HPHT,4 ~5 GPa,1430 ~1530℃),采用高压烧结技术,利用Y2O3、MgO作为烧结助剂,通过和不同质量配比的氮化硅(a-Si3N4,β-Si3N4)粉体复合,制备了具有高热导率和高致密性的Si3N4陶瓷.本实验采用X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱EDS、热导率测定仪、维氏硬度计对样品进行了分析和表征,研究了压强、烧结温度、保温时间对热导率和致密性的影响.结果 表明:超高压条件有效降低了烧结温度,缩短了烧结时间.当烧结条件在5 GPa,1490℃,1h时,其硬度为16.5 GPa,此时β-Si3N4复合陶瓷的致密化最优,气孔率(0.26;)和晶格缺陷显著改善.研究发现适当的延长烧结时间可以促进晶粒正常长大,同时产生较高的热导率,最高可达到64.6W/(m· K).  相似文献   

12.
以20vol; ZrB2粗粉和细粉为导电相,以3vol; MgO-2vol; YB2O3烧结助剂,通过热压烧结在1500℃制备了Si13N4-ZrB2复相陶瓷,研究了ZrB2粒径对致密度、相组成、显微结构以及电阻率的影响.结果表明,不依赖于Zrl2粒径,通过引入MgO-YB2O3烧结助剂,均可以获得高致密Si3N4-ZrB2陶瓷.以Zrl2粗粉为原料时,Si3N4-ZrB2陶瓷包含主要的αt-Si3N4 、β-Si3N4和ZrB2相以及微弱的Yb4 Si2N2O7相,由于ZrB2晶粒保持孤立状态,样品电阻率较高,为9.5×103 Ω·m;而以ZrB2细粉为原料时,其与Si3N4发生轻微的高温反应,除了包含主要的d-Si3N4、β-Si3N4和ZrB2相及微弱的Yb4Si2N2O7相之外,Si3 N4-ZrB2陶瓷还含有新生成的微弱ZrSi2和ZrN导电相,由于ZrB2晶粒保持连通状态,样品电阻率显著降低,仅有6.8 Ω·m.  相似文献   

13.
本研究中选用石英和焦炭为原料、天然锆英石为添加剂,采用XRD、SEM和EDS等分析方法,研究了反应温度和锆英石添加量对石英碳热还原氮化产物影响.研究结果表明:在0.13 MPa的流动氮气气氛中,反应温度在1450~1550℃时,石英的碳热还原氮化产物中含有Si2N2O、β-SiC和β-Si3N4物相;当反应温度为1600℃时,石英的碳热等在1600℃条件下,石英碳热还原氮化产物主要含有柱状β-Si3N4和少量纤维状β-SiC物相;当添加10wt;的天然锆英石时,产物的主要成分为β-Si3N4 、ZrN以及少量βSiC物相;当锆英石添加量为20wt;到50wt;时,产物中不仅含有β-Si3N4和ZrN物相,还存在c-ZrO2,m-ZrO2,Si2N2O及β-SiC等物相.  相似文献   

14.
利用烧结镁砂中固有杂质,加入金属A1粉、单质Si粉和α-Al2O3微粉,以Y2O3为助烧结剂,经氮化烧结炉1550℃氮化烧结1h制备出Mg-α/β-sialon复相陶瓷,实现镁质材料的性能改进和优化.研究了不同Y2O3加入量对Mg-α/β-sialon复相陶瓷的矿物组成及微观形貌的影响,借助于XRD分析试样中的晶相组成和晶胞参数,采用SEM及EDS对试样断口的微观形貌进行分析与观察.结果表明:Mg-α/β-sialon复相陶瓷以β-sialon为主晶相,Mg-α-sialon为次品相.随着Y2O3加入量的增加,Mg-α-sialon相的生成量呈减小趋势,β-sialon相的生成量呈增加趋势,Mg-t-sialon的形貌由短柱状向长棱柱状转变,当Y2O3加入5wt;时为片状结构.Y3+的引入使Mg-αβ-sialon相晶格变形,增加了缺陷浓度,提高了阴阳离子的自扩散能力,促进氮化烧结反应的进行.  相似文献   

15.
采用固相反应法,研究了V2O5添加量与0.6SrTiO3-0.4LaAlO3(简称6ST-4LA)陶瓷烧结性能及介电性能之间的变化关系.结果表明:少量V2O5的引入未改变陶瓷的晶相组成,主晶相仍为SrTiO3基固溶体,适量添加V2O5不仅能显著降低6ST-4LA陶瓷的烧结温度,而且能增大其介电常数和品质因数(Q·f),调节谐振频率温度系数τf;随着V2O5添加量的继续增加,有第二相SrVO3出现并逐渐增多.当V2O5添加量为0.10wt;,1450 ℃烧结时,6ST-4LA陶瓷获得最佳微波介电性能:εr=46.46,Q·f=59219 GHz,τf=3×10-6 /℃.  相似文献   

16.
为得到性能优良的复合SiC陶瓷,实验选用1μm的α-SiC和不同粒度β-SiC粉体经过喷雾造粒,将所得不同种类造粒粉压制β/α复合SiC陶瓷素坯,进行无压烧结。通过对烧结体的密度、显微硬度和断裂韧性进行测试和表征,分析研究β-SiC与α-SiC粒度组合对β/α复合SiC陶瓷的性能影响。研究结果表明:添加一定比例、合适粒径的β-SiC到α-SiC中对SiC陶瓷的性能有提高作用。当在1μm的α-SiC中添加1μm的β-SiC时复合SiC陶瓷密度最大,为3. 148 g/cm~3,维氏硬度也最大,为23. 98 GPa,同时其断裂韧性比单一α-SiC陶瓷有所提高,为4. 44 MPa·m~(1/2)。  相似文献   

17.
研究了MgO-Al2O3-Re2O3(Re=Lu,Y)三元烧结助剂体系对无压烧结Si3N4陶瓷显微结构和力学性能的影响.研究结果表明,添加MgO-Al2O3-Lu2O3三元助剂制备的Si3N4陶瓷显微结构具有明显的双峰分布,晶粒较粗化,致密度、硬度、弯曲强度、断裂韧性分别为96.4;、14.59 GPa、964 MPa、7.64 MPa·m1/2;而添加MgO-Al2O3-Y2O3三元助剂制备的Si3N4陶瓷具有细化的显微结构,致密度、硬度、弯曲强度、断裂韧性分别为99.9;、15.29 GPa、758 MPa、6.60 MPa·m1/2.  相似文献   

18.
为降低0.6SrTiO3-0.4LaAlO3(简称6ST-4LA)微波介质陶瓷的烧结温度,采用固相反应法,研究了B2O3对其结构与性能的影响.结果表明:添加B2O3可有效地降低6ST-4LA陶瓷的烧结温度,由1550℃降至1450℃;主晶相仍为赝立方钙钛矿结构固溶体,但有第二相的出现,其含量随着B2O3添加量的增加先降低后升高.当B2O3添加量为0.50wt;在1450℃下烧结时,6ST-4LA陶瓷获得最佳微波介电性能:εr=44.46,Q·f=51127 GHz,τf=-2.3×106/℃.  相似文献   

19.
采用微波烧结方式制备Al2O3陶瓷,研究了助烧剂含量和素坯脱胶工艺对Al2O3陶瓷微观组织和力学性能的影响.研究结果表明:相较于传统无压烧结,微波烧结有利于降低Al2O3陶瓷的烧结温度,并提高致密度和力学性能.脱胶后烧结体晶粒结合更加紧密,界面结合强度有明显提高,断裂模式以穿晶断裂为主.当MgO与Y2O3添加量为0.7wt;时,Al2O3陶瓷致密度稳定在99.1;以上,断裂韧度和维氏硬度分别达到4.9 MPa·m1/2和17.0 GPa.  相似文献   

20.
以微米级α-Al2O3、陶瓷水体分散剂为主要原料,以La2O3-水洗高岭土为烧结助剂,采用冰模板法制备了一种具有高孔隙率和较高抗压强度的氧化铝/高岭土复合定向多孔陶瓷.研究了不同添加量的La2O3对多孔陶瓷的显气孔率、体积密度、抗压强度和微观形貌的影响.结果表明:添加适量的稀土La2O3能降低多孔陶瓷烧结温度、提高体积密度和抗压强度.通过高能机械球磨法添加La2O3,在1350℃烧结制备的多孔材料样品显气孔率为82;,样品的抗压强度达到10 MPa以上.当La2O3加入量达到3;时,可使多孔陶瓷抗压强度提高到15.2 MPa,较不掺加La2O3提高了约53;.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号