首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halloysite nanotube (HNT) clay and biodegradable polylactic acid (PLA) nanocomposites were fabricated by a melt-blending method with five different clay levels (1, 3, 5, 7, and 9 wt%). The effect of HNT loading on the thermal and mechanical properties of the PLA/HNT nanocomposites was examined by thermogravimetric analysis and universal tensile testing, respectively. Morphological characteristics were investigated by transmission electron microscopy. The composites' melt rheological characteristic analyses were conducted using a rotational rheometer in both steady-shear and oscillatory dynamic testing modes. The data were found to be well-analyzed using the Carreau model, Cox–Merz rule, modified Cole–Cole plot, and van Gurp–Palmen plot.  相似文献   

2.
Poly (lactic acid) (PLA)/halloysite nanotube (HNT) composite fibres were prepared by using a simple and versatile electrospinning technique. The systematic approach via Taguchi design of experiments (DoE) was implemented to investigate factorial effects of applied voltage, feed rate of solution, collector distance and HNT concentration on the fibre diameter, HNT non-intercalation and nucleation effects. The HNT intercalation level, composite fibre morphology, their associated fibre diameter and thermal properties were evaluated by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), imaging analysis and differential scanning calorimetry (DSC), respectively. HNT non-intercalation phenomenon appears to be manifested as reflected by the minimal shift of XRD peaks for all electrospun PLA/HNT composite fibres. The smaller-fibre-diameter characteristic was found to be sequentially associated with the feed rate of solution, collector distance and applied voltage. The glass transition temperature (T g) and melting temperature (T m) are not highly affected by varying the material and electrospinning parameters. However, as the indicator of the nucleation effect, the crystallisation temperature (T c) of PLA/HNT composite fibres is predominantly impacted by HNT concentration and applied voltage. It is evident that HNT’s nucleating agent role is confirmed when embedded with HNTs to accelerate the cold crystallisation of composite fibres. Taguchi DoE method has been found to be an effective approach to statistically optimise critical parameters used in electrospinning in order to effectively tailor the resulting physical features and thermal properties of PLA/HNT composite fibres.  相似文献   

3.
Polymer electrolyte films of biodegradable poly(ε-caprolactone) (PCL) doped with LiSCN salt in different weight ratios were prepared using solution cast technique. The effect of crystallinity and interaction between lithium ions and carbonyl groups of PCL on the ionic conduction of PCL:LiSCN polymer electrolytes was characterized by X-ray diffraction (XRD), optical microscopy, Fourier transform infrared spectroscopy (FTIR) and AC impedance analysis. The XRD results revealed that the crystallinity of the PCL polymer matrix decreased with an increase in LiSCN salt concentration. The complexation of the salt with the polymer and the interaction of lithium ions with carbonyl groups of PCL were confirmed by FTIR. The ionic conductivity was found to increase with increasing salt concentration until 15 wt% and then to decrease with further increasing salt concentration. In addition, the ionic conductivity of the polymer electrolyte films followed an Arrhenius relation and the activation energy for conduction decreased with increasing LiSCN concentration up to 15 wt%. UV–vis absorption spectra were used to evaluate the optical energy band gaps of the materials. The optical energy band gap shifted to lower energies with increasing LiSCN salt concentration.  相似文献   

4.
A series of solid polymer electrolytes (SPEs) based on poly (ethylene oxide)/polylactic acid (PEO/PLA) with liquid crystal ionomer (LCI) intercalated montmorillonite (MMT) nanocomposites (LCI-MMT) has been prepared by solution blending method. The effects of LCI-MMT on the structural, crystallization, thermal, and ionic conductivity properties of solid polymer electrolytes have been analyzed. It is demonstrated that the incorporation of LCI-MMT into the blend suppressed the crystallinity of PEO and increased the crystallinity of PLA. The maximum ionic conductivity is found to be in the range of 1.05?×?10?5 S/cm for 0.5 wt% LCI-MMT, which is higher than that of the LCI-MMT-free polymer electrolyte (5.36?×?10?6 S/cm) at room temperature.  相似文献   

5.
《Composite Interfaces》2013,20(7-9):619-637
Regenerated cellulose fiber (RN) and natural fiber (pine wood fiber (PW)) filled ε-polycaprolactone (PCL) compound, PCL/RN (90/05 and 75/25 wt%) and PCL/PW (90/05, 75/25 and 50/50 wt%), are investigated with regard to interfacial adhesion, rheological properties, morphology, nucleation and mechanical properties. The interfacial adhesion of the RN filled PCL compounds shows better values than that of the PW filled ones. As the concentration of the RN and the PW particles is increased, the dynamic viscosity, the crystallization temperature and the elongation modulus are increased; however, the elongation strain is decreased. The viscosity of the RN filled compounds is higher than that of the PW ones at the same loadings. Striking differences are observed in elongation yield stress measurements. As the concentration of the particles is increased, while the elongation yield stress of the RN compounds is significantly increased, that of the PW compounds does not show significant improvement. More spherulites are locally developed on the RN surface than on the PW surface. We conclude the interfacial adhesion of the RN surface with the PCL is better than that of the PW surface with the PCL.  相似文献   

6.
Banana fiber (BF)-reinforced low-density polyethylene (LDPE) unidirectional composites were fabricated by the compression molding process with 40 wt% fiber loading. The fibers were modified with methylacrylate (MA) mixed with methanol (MeOH) along with 2% benzyl peroxide under thermal curing method at different temperatures (50–90 °C) for different curing times (10–50 min) in order to have better compatibility with the matrix. The effect of fiber surface modification on the mechanical properties (tensile and impact properties) of the composites were evaluated. Monomer concentration, curing temperature, and curing time were optimized in terms of polymer loading and mechanical properties. The mechanical properties were found to be improved based on the improved interaction between the reinforcement and the matrix. Optimized BFs were again treated with 2–5 wt% starch solutions and composites made of 4% starch treated BF showed the highest mechanical properties than that of MA treated composites. Scanning electron microscopy (SEM) was performed to get an insight into the morphology of the composites. Water uptake and soil degradation test of the composites were also investigated.  相似文献   

7.
Biodegradable polymer electrolyte films based on poly(ε-caprolactone) (PCL) in conjunction with lithium tetrafluoroborate (LiBF4) salt and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid were prepared by solution cast technique. The structural, morphological, thermal, and electrical properties of these films were examined using X-ray diffraction (XRD), optical microscopy (OM), differential scanning calorimetry (DSC), and impedance spectroscopy. The XRD and OM results reveal that the pure PCL possesses a semi-crystalline nature and its degree of crystallinity decreases with the addition of LiBF4 salt and EMIMBF4 ionic liquid. DSC analysis indicates that the melting temperature and enthalpy are apparently lower for the 40 wt% EMIMBF4 gel polymer electrolyte as compared with the others. The ambient temperature electrical conductivity increases with increasing EMIMBF4 concentration and reaches a high value of ~2.83?×?10?4 S cm?1 for the 85 PCL:15 LiBF4 + 40 wt% EMIMBF4 gel polymer electrolyte. The dielectric constant and ionic conductivity follow the same trend with increasing EMIMBF4 concentration. The dominant conducting species in the 40 wt% EMIMBF4 gel polymer electrolyte determined by Wagner’s polarization technique are ions. The ionic conductivity of this polymer electrolyte (~2.83?×?10?4 S cm?1) should be high enough for practical applications.  相似文献   

8.
Poly(vinyl butyral) (PVB) is of particular interest because of its low cost, extremely wide temperature work range (? 20 to 120 °C), and efficient chemical stability. In this study, a gel polymer electrolyte (GPE) containing Li+ ions was fabricated by using dimethylacetylamine (DMA), lithium perchlorate (LiClO4), and PVB. The experimental results indicated that a highly transparent GPE with a high ionic conductivity (σ) could be obtained by mixing glue (DMA with a PVB content of 10 wt%) with a LiClO4 content of 6 wt%. It was found that the ionic conductivity (σ) of the GPE depended on the LiClO4 content, and the GPE with a LiClO4 content of 6 wt% exhibited a maximum σ of 7.73 mS cm?1, a viscosity coefficient of 3360 mPa s, and a transmittance greater than 89% (visible region) at room temperature. Furthermore, PVB improved the electrolyte solution leakage, and the LiClO4 was used as an ion supply source for the high σ of the GPE.  相似文献   

9.
Poly(ethylene glycol) (PEG) was added as a plasticizer to the composite of poly(lactic acid) (PLA) and a modified carbon black (MCB). Among the three different molecular weight (Mn = 1000, 2000, 6000) PEGs used, PEG2000 promoted crystallization of PLA and enhanced the nucleation activity of MCB more efficiently than the other two. The crystallization rate of PLA/PEG2000/3 wt% MCB composite was three times that of PLA. Although a small decrease in tensile strength and modulus of elasticity of the composite was found as the PEG content increased, the elongation at break of the PLA/PEG/MCB composites significantly improved. When the PEG2000 content was 15 wt%, the elongation at break of the blend was 90%, 4.5 times that of the neat PLA.  相似文献   

10.
Poly(lactic acid) (PLA)/talc composites containing different contents of talc were prepared by melt blending. Multiple properties of the prepared composites were investigated including mechanical, rheological and crystallization as well as foaming properties. Tensile test results indicated that the mechanical properties of the composite with 3% wt. talc showed significant reinforcement and toughening effect. When the talc content reached 10%, Young's modulus of the composite was increased by 35% compared with pure PLA. The morphological results showed that the talc layers were partially delaminated and uniformly dispersed in the PLA matrix at low loading. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) results indicated that 3% wt. talc significantly increased the crystallinity of the PLA matrix. The thermogravimetric analysis (TGA) results demonstrated that the thermal stability of PLA/talc composites was enhanced as well. Moreover, talc at low loading could act as a plasticizer in the polymer flow, which was investigated by rheological tests. The batch foaming experiments revealed that 3% wt. talc loading had the most notable heterogeneous nucleation effect, with the cell size decreasing from 15.4 μm for neat PLA to 8.5 μm and the cell density increasing by 298%.  相似文献   

11.
《Composite Interfaces》2013,20(7-9):583-598
The relationship between interfacial adhesion and dynamic viscosity of regenerated cellulose fiber (CF) filled in poly(ε-caprolactone) (PCL) and polypropylene (PP) matrix is compared. The rate of viscosity rise from its virgin polymer of the PCL/CF compounds shows higher than that of the PP/CF ones at the same CF loadings. The interfacial adhesion of the CF surface with the PCL matrix is better than with the PP due to polar characteristic of the PCL. Striking differences are observed in the PCL compounds. As the concentration of the particles increases, the crystalline temperature, the spherulite formation, the elongation modulus and the yield stress of the PCL/CF compounds are significantly higher than those of the PP/CF compounds. More spherulites are locally developed on the CF surface in the PCL/CF compounds than in the PP/CF ones. The higher rate of viscosity rise of the PCL/CF compounds than the PP/CF compounds is due to higher interfacial adhesion of the CF surface with the PCL than with the PP.  相似文献   

12.
Acrylonitrile-butadiene-styrene and poly(?-caprolactone) blends (ABS/PCL) were prepared by mixing styrene-co-acrylonitrile (SAN), polybutadiene-g-SAN (PB-g-SAN), and PCL with varied SAN and PCL composition. PCL is miscible with SAN and can improve the matrix toughness. The impact strength and elongation at break of the ABS/PCL blends increased with the PCL content. When the PCL content was lower than 20 wt%, the improvement of impact strength for the blends was not obvious. A significant increase of impact strength took place when the PCL content was between 20 and 25 wt%. When PCL content was more than 20 wt%, the impact strength was higher than 800 J/m which shows the super toughness. The addition of PCL improved the dispersed phase morphology of PB-g-SAN in the matrix and the interfacial adhesion increased. Deformation observations showed that, when the PCL content was lower than 20 wt%, crazing was the major deformation mode. When the PCL content was 20 wt%, crazing and slight shear yielding could be found. When the PCL content was more than 20 wt%, cavitation of rubber particles and shear yielding of the matrix were the major deformation modes. The cause of the change of the deformation mode lies in the varied matrix composition which modifies the crazing and yielding stresses of the matrix and the final fracture mode and impact toughness.  相似文献   

13.
Poly(lactic acid)/organo-montmorillonite (PLA/OMMT) nanocomposite films were prepared through solution intercalation using dichloromethane as solvent. X-ray diffraction indicated that organo-montmorillonite (OMMT) was well intercalated and the interlayer spacing d increased by 0.94–1.47 nm. Transmission Electron Microscopy showed that a majority of OMMT was fully exfoliated and uniformly dispersed in the PLA matrix at low filler loading, whereas more intercalated tactoids and aggregates of OMMT existed at high loading. The crystallinity of PLA was hardly changed with the addition of OMMT. Additionally, CO2 permeability and water vapor transmission rate of the composite films were reduced with increasing content of OMMT. At 5 wt% OMMT loading, CO2 permeability and water vapor transmission rate were reduced by 75.8% and 23.9%, respectively. The tensile strength (TS) and Young's modulus of the PLA/OMMT nanocomposites were first enhanced, and then decreased with increasing content of OMMT. Compared with pure PLA, a 83.8% increase in the Young's modulus and a 76.0% improvement in TS were obtained with the addition of 3 wt% OMMT.  相似文献   

14.
A new series of gel polymer electrolytes (GPEs) based on an optimized composition of polymer blend-salt matrix [poly(vinyl chloride) (PVC) (30 wt%) / poly(ethyl methacrylate) (PEMA) (70 wt%): 30 wt% zinc triflate Zn(CF3SO3)2] containing different concentrations of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid has been prepared by simple solution casting technique. The prepared films of gel polymer membranes have been characterized utilizing complex impedance spectroscopy, differential scanning calorimetry (DSC), thermogravimetric (TG), and cyclic voltammetry (CV) analyses. The dielectric constant and ionic conductivity pursue similar trend with increasing EMIMTFSI concentration. The addition of ionic liquid in varied amounts into the optimized polymer blend-salt system effectively reduces the glass transition temperature (Tg) of the film as revealed from differential scanning calorimetry results. The origin of an improved thermal stability and feasible cyclic performance in respect of the best conducting sample of the resultant gel polymer electrolytes was also examined by utilizing thermogravimetric and cyclic voltammetry measurements.  相似文献   

15.
Nanoparticles have been known as the useful materials in working fluids for petroleum industry. But the stabilization of nano-scaled materials in water-based working fluids at high salinities is still a big challenge. In this study, we successfully prepared the anionic polymer/multi-walled carbon nanotubes (MWNTs) composites by covalently wrapping of MWNTs with poly (sodium 4-styrenesulfonate) (PSS) to improve the stability of MWNTs in high concentration electrolytes. The PSS/MWNTs composites can automatically disperse in salinity up to 15 wt% NaCl and API brines (8 wt% NaCl?+?2 wt% CaCl2). Hydrodynamic diameters of composites were measured as a function of ionic strength and API brines by dynamic light scattering (DLS). By varying the concentration of brines, hydrodynamic diameter of PSS/MWNTs composites in brines fluctuated between 545?±?110 nm for 14 days and 673?±?171 nm for 30 days. Above results showed that PSS/MWNTs could be well stable in high salts solutions for a long period of time. After wrapped with PSS, the diameters of nanotubes changed from 30?~?40 to ~?430 nm, the thickness of wrapped polymer is about ~?400 nm by analysis of morphologies. The zeta potentials of PSS/MWNTs composites in various salinity of brines kept at approximately ??41?~???52 mV. Therefore, the well dispersion of PSS/MWNTs in high salinity is due to large negative charges of poly (sodium 4-styrenesulfonate), which provide enough electrostatic repulsion and steric repulsion to hinder compression of electric double layer caused by high concentration electrolytes.  相似文献   

16.
Surface-modified silica was incorporated into bio-based polylactic acid (PLA) to improve its performance. The modification by aminosilane on the silica was confirmed through FTIR (Fourier transform infrared) spectra. Following the aminosilane modification, polyethylene glycol methyl ether (PEGME) was grafted, via the aminosilane, on the silica to form the desired surface-modified silica (PEGME-silica). The grafting percentage of polyethylene glycol methyl ether was about 6.9 wt%. Unmodified silica, having underwent a similar treatment to maintain the same thermal history but without adding silane and PEGME, was also prepared. The PEGME-silica system had slightly higher tensile strength than the unmodified silica system, with a rheological study showing an enhanced polymer matrix-dispersed silica interaction and better dispersion in morphology observations being proposed as the cause. The dynamic storage modulus in the terminal zone was reduced for large amounts of highly dispersed surface-modified silica in comparison with unmodified silica. Tan δ decreased significantly with increasing unmodified silica contents in the low frequency region, resulting in solid-like behaviors. On the other hand, there was only a limited decrement for modified silica-filled samples in the corresponding ranges, especially for low dosages of the modified silica. The shear thinning phenomenon appeared to be more pronounced for unmodified silica at high silica content, but not for modified silica. To the best of our knowledge, this is the first report of the effect of polyethylene glycol methyl ether (PEGME)-modified nanosilica on the properties of PLA/silica nanocomposites prepared under a melt mixing process to illustrate the significance of surface modification via Cole–Cole plots.  相似文献   

17.
Graphene (GN)-filled polylactic acid (PLA) nanocomposites were prepared through a solution blending method with GN weight percent ranging from 0.5 to 2?wt%. Rheological, melting and crystallization behaviors of the prepared PLA/GN nanocomposites were investigated by means of dynamic rheological measurements and differential scanning calorimetry (DSC). The shear viscosities of the PLA/GN nanocomposites decreased with increasing GN content, which was remarkably different from previous reports on the modifications using traditional nanofillers (e.g., clay, carbon nanotubes, etc.). The nonisothermal melt crystallization kinetic analysis suggested that GN served as a nucleating agent and could considerably promote the PLA’s crystallization through heterogeneous nucleation. Our findings suggested that at relatively low cooling rates (??≤?10?°C/min) even a small amount of GN promoted the nucleation and considerably increased the crystallization rate. However, the crystallinity began to decrease at higher cooling rates (e.g., ??≥?20?°C/min), especially when the GN content was high (e.g., 2?wt%), possibly owing to the GN aggregation effect considering PLA is a slowly crystallizing polymer.  相似文献   

18.
A novel method was employed to modify the surface of carbon black (CB) by an organic small molecule in a Haake Rheomix mixer. The modified carbon black (MCB) was dispersed uniformly in poly(lactic acid; PLA). The crystallization behaviors of PLA, PLA/CB and PLA/MCB composites were investigated by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and polarizing optical microscopy. It is found that the addition of CB or MCB can influence the crystallization behavior of PLA. PLA/MCB has a faster crystallization rate and higher crystallization peak temperature than PLA/CB. For non-isothermal studies, Jeziorny and Mo equations were employed. The Mo equation can well describe the non-isothermal crystallization of the three samples. For PLA/CB and PLA/MCB composites containing 3wt% fillers, the nucleating activity for CB is about 0.32, and about 0.16 for MCB. All these results show that MCB is an effective nucleating agent. PLA/MCB has a higher nucleation rate than PLA/CB because of the finer dispersed particles size and improved interaction between MCB and PLA.  相似文献   

19.
Poly(ethylene oxide)(PEO)–poly(vinyl alcohol) (PVA) blend-based gel polymer electrolytes (GPEs) have been prepared by blending equal weights of PEO and PVA in ethylene carbonate (EC), dimethyl sulfoxide (DMSO), tetrabutylammonium iodide (TBAI), and iodine crystals (I2). The conductivity, diffusion coefficient, number density, and ion mobility of the electrolytes have been calculated from the impedance data obtained from electrochemical impedance spectroscopy (EIS) measurements. The GPE with the composition of 7.02 wt%, PVA, 7.02 wt% PEO, 30.11 wt% ethylene carbonate (EC), 30.11 wt% DMSO, 24.08 wt% TBAI and 1.66 wt% I2 exhibits the highest conductivity of 5.5 mS cm?1 at room temperature. Dye-sensitized solar cells (DSSCs) with configuration fluorine tin oxide (FTO)/titanium dioxide/N3-dye/GPE/platinum/FTO have been fabricated and tested under the white light of intensity 100 mW cm?2. The DSSC containing the highest conducting GPE exhibits the highest power conversion efficiency, η of 5.36 %.  相似文献   

20.
Solid polymer electrolytes (SPEs) based on poly (vinyl chloride)/poly (ethyl methacrylate) [PVC/PEMA] blend complexed with zinc triflate [Zn(CF3SO3)2] salt have been prepared using solution casting technique. Thin film samples containing various blend ratios of PVC/PEMA with fixed composition of salt have been examined by means of complex impedance analysis, and as a consequence, the typical composition corresponding to PVC (30 wt%)/PEMA (70 wt%) has been identified as the optimized blend exhibiting the highest room temperature ionic conductivity of 10?8 Scm?1. The ionic conductivity of the optimized blend was further enhanced from 10?8 to 10?6 Scm?1 by adding the chosen salt in different weight percentages at 301 K. The occurrence of complexation of the polymer blend and an evidence of interaction of cations, namely Zn2+ ions with the polymer blend, have been confirmed by Attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy measurement studies. The efficacy of ion-polymer interactions was estimated by means of an evaluation of transport number data pertaining to Zn2+ ions which was found to be 0.56. The apparent changes resulting in the structural properties of these polymer electrolytes possessing a honeycomb-like microporous structure were identified using X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies. Such promising features of the present polymer blend electrolyte system appear to suggest possible fabrication of new rechargeable zinc batteries involving improved device characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号