首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon carbide (SiC) single crystals with the 6H polytype structure were irradiated with 4.0-MeV Au ions at room temperature (RT) for increasing fluences ranging from 1?×?1012 to 2?×?1015 cm?2, corresponding to irradiation doses from ~0.03 to 5.3 displacements per atom (dpa). The damage build-up was studied by micro-Raman spectroscopy that shows a progressive amorphization by the decrease and broadening of 6H-SiC lattice phonon peaks and the related growth of bands assigned to Si–Si and C–C homonuclear bonds. A saturation of the lattice damage fraction deduced from Raman spectra is found for ~0.8?dpa (i.e. ion fluence of 3?×?1014 cm?2). This process is accompanied by an increase and saturation of the out-of-plane expansion (also for ~0.8?dpa), deduced from the step height at the sample surface, as measured by phase-shift interferometry. Isochronal thermal annealing experiments were then performed on partially amorphous (from 30 to 90%) and fully amorphous samples for temperatures from 200 °C up to 1500 °C under vacuum. Damage recovery and densification take place at the same annealing stage with an onset temperature of ~200 °C. Almost complete 6H polytype regrowth is found for partially amorphous samples (for doses lower than 0.8 dpa) at 1000 °C, whereas a residual damage and swelling remain for larger doses. In the latter case, these unrelaxed internal stresses give rise to an exfoliation process for higher annealing temperatures.  相似文献   

2.
Chromium ions implantation was performed into metal–organic chemical vapor deposition grown GaN thin film of thickness about 2 µm at 5 × 1016 cm?2 fluence. Implantation was performed at various substrate temperatures (RT, 250, 350 °C). Rapid thermal annealing was employed at 900 °C to remove implantation-induced damages as well as for activation of dopant. Structural study was performed by Rutherford backscattering and channeling spectrometry and high-resolution X-ray diffraction. To confirm magnetic properties at room temperature, hysteresis loops were obtained using alternating gradient magneto-meter. Well-defined hysteresis loops were achieved at 300 K in implanted and annealed samples. Temperature-dependent magnetization indicated magnetic moment at 5 K and retain up to 380 K.  相似文献   

3.
Bi4Ti3O12 (BIT) nanoparticles with a narrow average particle size distribution in the range of 11–46 nm was synthesized via a metal-organic polymeric precursor process. The crystallite size and lattice parameter of BIT were determined by XRD analysis. At annealing temperatures >550 °C, the orthorhombic BIT compound with lattice parameters a = 5.4489 Å, b = 5.4147 Å, and c = 32.8362 Å was formed while at lower annealing temperatures orthorhombicity was absent. Reaction proceeded via the formation of an intermediate phase at 500 °C with a stoichiometry close to Bi2Ti2O7. The particle size and the agglomerates of the primary particles have been confirmed by FESEM and TEM. The decomposition of the polymeric gel was ascertained in order to evaluate the crystallization process from TG-DSC analysis. Raman spectroscopy was used to investigate the lattice dynamics in BIT nanoparticles. In addition, investigation of the dependence of the visible emission band around the blue–green color emission on annealing temperatures and grain sizes showed that the effect of grain size plays important roles, and that oxygen vacancies may act as the radiative centers responsible for the observed visible emission band.  相似文献   

4.
Crystal growth and the magnetic properties of bismuth substituted yttrium iron garnet (Bi-YIG) nanoparticles were studied with particular focus on the bismuth composition dependence of the magnetic properties of the particles and the effects of annealing on the garnet phase formation. The Bi-YIG nanoparticles of 47–67 nm in size can be chemically synthesized when they are annealed at 650–850 °C. Both the lattice constant and the magnetization of the garnet nanoparticles linearly increase when the bismuth composition in the Bi-YIG particles increases. We have found that chemically synthesized nanoparticles transform from the amorphous to the garnet phase when annealed at temperatures below 650 °C, while the onset of magnetic moment of iron in the garnet nanoparticles is observed slightly above 650 °C. According to Mössbauer effect measurements, the hyperfine fields of 57Fe at the tetrahedral and octahedral sites in the garnet are 39 and 48 T, respectively.  相似文献   

5.
Diluted magnetic semiconductors GaFeAs were grown by molecular beam epitaxy and characterized. Ga1−xFexAs ternary alloys were obtained at the growth temperature Ts=200 °C ranging from x=0.005 to 0.03. The effects of thermal treatment on behaviors of defects, affecting to the magnetic properties of GaFeAs layer were particularly elucidated. As-grown samples were annealed at temperatures varying from 400 to 600 °C. From the measurement of double crystal X-ray diffraction, we observed Fe-related peak which shifted to a higher diffraction angle as the Fe content increased, indicating that the lattice constant decreases with increasing Fe content. In contrast, above the annealing temperature 500 °C, the lattice constant becomes smaller than that of GaAs. Using the deep level transient spectroscopy, various defects in GaFeAs layer were observed and identified in conjunction with magnetic properties.  相似文献   

6.
A thin poly(ethylmethacrylate) (PEMA) layer is deposited on n-InP as an interlayer for electronic modification of Au/n-InP Schottky structure. The electrical properties of Au/PEMA/n-InP Schottky diode have been investigated by current–voltage (IV) and capacitance–voltage (CV) measurements at different annealing temperatures. Experimental results show that Au/PEMA/n-InP structure exhibit a good rectifying behavior. An effective barrier height as high as 0.83 eV (IV) and 1.09 eV (CV) is achieved for the Au/PEMA/n-InP Schottky structure after annealing at 150 °C compared to the as-deposited and annealed at 100 and 200 °C. Modified Norde's functions and Cheung method are also employed to calculate the barrier height, series resistance and ideality factors. Results show that the barrier height increases upon annealing at 150 °C and then slightly decreases after annealing at 200 °C. The PEMA layer increases the effective barrier height of the structure as this layer creates a physical barrier between the Au metal and the n-InP. Terman's method is used to determine the interface state density and it is found to be 5.141 × 1012 and 4.660 × 1012 cm?2 eV?1 for the as-deposited and 200 °C annealed Au/PEMA/n-InP Schottky diodes. Finally, it is observed that the Schottky diode parameters change with increasing annealing temperature.  相似文献   

7.
Single crystals of ZnxCd1?xS have been grown from the vapour phase at 1100°C in the presence of H2S gas. X-ray diffraction studies of the as-grown crystals show that polytypism and stscking faults occur in ZnxCd1?xS crystals for x ? 0.94. It is observed that for 0.92 < x < 0.98 the 2H structure of ZnxCd1?xS crystals transforms to a disordered 6H structure on annealing in vacuum around 600°C. For 0.95 < x < 0.98 this 6H structure finally transforms to a disordered 3C structure on annealing further at higher temperatures around 800°C. The structural transformations occur through a non-random insertion of stacking faults, as revealed by the diffuse streak joining the X-ray diffraction maxima along the 10.L reciprocal lattice row. Experimental investigation of the diffuse intensity distribution, as recorded on a single crystal diffractometer from partially transformed single crystals, reveals that the mechanism of the transformation is very different from that reported for the same transformation in silicon carbide and cannot be described in terms of a single-parameter model of non-random deformation faulting.  相似文献   

8.
The structural variation in multilayer Langmuir-Blodgett films of lead stearate caused by heat treatment under different conditions in the temperature range 20–100°C is investigated by X-ray reflectometry and high-resolution electron diffraction. Successive annealing of the samples is shown to not alter the initial layered structure at temperatures of 60, 80, and 100°C; partial disturbance of the layered structure occurs upon successive annealing at 80°C and 100°C. Significant disturbance of the structure is observed when the films are heated immediately to 100°C. In all these cases, the orthorhombic (pseudomonoclinic) lattice, with the lattice constants: a = 0.496, b = 0.738, c = 9.60 nm, α = β = γ = 90°, space group P2/1b, formed by transferring monolayers onto the substrate is retained in the crystalline domains of the film.  相似文献   

9.
The effects of layer thickness and thermal annealing on Curie temperature have been studied for CoPt ultrathin continuous layers in AlN/CoPt multilayer structures. It is found that there exists a critical thickness below which Curie temperature rapidly decreases due to the loss of spin-spin interactions in the vicinity of interface. After high temperature annealing, the in-plane lattice constant of CoPt film is increased and the exchange coupling parameter is decreased. Consequently, Curie temperatures decrease for some films with large thickness, compared with as-deposited state. Upon annealing at 600?°C, CoPt undergoes ordering transformation, which also contributes to the degradation of the Curie temperature. However, when the CoPt film thickness is below 2?nm, the Curie temperature is increased after annealing. Especially for 1?nm thick film, the Curie temperature is strikingly increased from 173?°C to 343?°C after annealing at 600?°C. This effect is attributed to the out-of-plane lattice deformation of CoPt thin layers in AlN/CoPt multilayer structures.  相似文献   

10.
In this work, the structural, chemical and magnetic properties of ZnO:Mn nanorods were investigated. Firstly, well-aligned ZnO nanorods with their long axis parallel to the crystalline c-axis were successfully grown by the vapor phase transport technique on Si substrates coated with a ZnO buffer layer. Mn metal was then diffused into these nanorods at different temperatures in vacuum. From SEM results, ZnO:Mn nanorods were observed to have diameters of ~100 nm and lengths of 4 μm. XPS analysis showed that the Mn dopant substituted into the ZnO matrix with a valence state of +2. Magnetic measurements performed at room temperature revealed that undoped ZnO nanorods exhibit ferromagnetic behavior which may be related to oxygen vacancy defect-mediated d 0 ferromagnetism. ZnO:Mn samples were seen to show an excess room temperature ferromagnetism that is attributed to the presence of oxygen vacancy defects forming bound magnetic polarons involving Mn.  相似文献   

11.
The aim of this work is to investigate the optical constants of aluminum doped zinc oxide films annealed at different temperatures. With increasing temperature, due to decreasing unfilled inter-granular volume per unit thickness, the optical transmittance spectra of films were increased. The films have a normal dispersion in the spectral range 400?<?λ?<?500 nm and the anomalous dispersion in IR range. The lattice dielectric constants εL, the free charge carriers concentration, the plasma frequency, Spitzer–Fan model and the waste of electrical energy as heat of films can be analyzed using the refractive index n and the extinction coefficient k spectra. With increasing annealing temperature, the lattice dielectric constants εL of films decrease however the free charge carriers concentration of films increase. The free carrier electric susceptibility of films annealed at 600 °C has maximum value. The energy loss by the free charge carriers when traversing the bulk and surface of films annealed at 600 °C has a minimum value in the near fundamental absorption edge and it with increasing energy increases.  相似文献   

12.
The effect of Cr3+ impurity ions on the dielectric and pyroelectric properties of triglycine sulfate crystals grown at temperatures below 0°C is studied. The Curie temperature T C of the chromium-containing crystals is 0.2–0.4°C lower than that of the impurity-free crystals grown at conventional temperatures. A stable reproducibility of the results of the pyroelectric measurements for the crystals studied is established, which indicates that the polar state in crystals is stabilized by growth defects.  相似文献   

13.
Highly conductive and transparent indium tin oxide (ITO) thin films, each with a thickness of 100 nm, were deposited on glass and Si(100) by direct current (DC) magnetron sputtering under an argon (Ar) atmosphere using an ITO target composed of 95% indium oxide and 5% tin oxide for photon-STM use. X-ray diffraction, STM observations, resistivity and transmission measurements were carried out to study the formation of the films at substrate temperatures between 40 and 400 °C and the effects of thermal annealing in air between 200 and 400 °C for between1 and 5 h. The film properties were highly dependent on deposition conditions and on post-deposition film treatment. The films deposited under an Ar atmosphere pressure of ∼1.7×10-3 Torr by DC power sputtering (100 W) at substrate temperatures between 40 and 400 °C exhibited resistivities in the range 3.0–5.7×10-5 Ω m and transmissions in the range 71–79%. After deposition and annealing in air at 300 °C for 1 h, the films showed resistivities in the range 2.9–4.0×10-5 Ω m and transmissions in the range 78–81%. Resistivity and transmission measurements showed that in order to improve conductive and transparent properties, 2 h annealing in air at 300 °C was necessary. X-ray diffraction data supported the experimental measurements of resistivity and transmission on the studies of annealing time. The surface roughness and film uniformity improve with increasing substrate temperature. STM observations found the ITO films deposited at a substrate temperature of 325 °C, and up to 400 °C, had domains with crystalline structures. After deposition and annealing in air at 300 °C for 1 h the films still exhibited similar domains. However, after deposition at substrate temperatures from 40 °C to 300 °C, and annealing in air at 300 °C for 1 h, the films were shown to be amorphous. More importantly, the STM studies found that the ITO film surfaces were most likely to break after deposition at a substrate temperature of 325 °C and annealing in air at 300 °C for 2 or 3 h. Such findings give some inspiration to us in interpreting the effects of annealing on the improvement of conductive and transparent properties and on the transition of phases. In addition, correlations between the conductive/transparent properties and the phase transition, the annealing time and the phase transition, and the conductive/transparent properties and the annealing time have been investigated. Received: 10 July 2000 / Accepted: 27 October 2000 / Published online: 9 February 2001  相似文献   

14.
Annealed Zircaloy-2 was exposed to fast neutron fluences in the range 0.46 to 6.71 × 1019 nvt, E > 1 MeV, at temperatures of up to 450°C. The level of radiation hardening, as measured by the change in yield stress after irradiation, increased with irradiation temperature at least up to 380°C.

Post-irradiation annealing treatments showed that radiation anneal hardening occurred after irradiation at temperatures up to 325°C. After irradiation at 375°C, annealing treatments did not produce a further increase in the yield stress above that produced by the irradiation, however the radiation hardening persisted to 450°C. The uniform strain tended to decrease as the amount of radiation anneal hardening increased and as the fast neutron fluence increased above ~5 × 1018 nvt, E > 1 MeV.

The effects of irradiation temperature and post-irradiation annealing on the yield stress and on uniform strain are explained in terms of the strengthening of radiation damage defect clusters and their increased effectiveness to impede dislocation movement.  相似文献   

15.
We report on the defect-dominated light emission and ultraviolet (UV) photoconductivity characteristics of ZnO nanorods (NRs) fabricated using a facile, cost-effective, and catalyst-free thermal decomposition route under varying reaction temperatures. The morphological and structural studies reveal the formation of homogeneous quality nanorods in large scale at the highest reaction temperature of 600 °C. The luminescence feature of the nanorods is dominated by the defect related emission over the typical band edge emission. The variation of band-edge and native defect-related emission response of the samples has been correlated to the morphology and microstructure. In photoconductivity studies, the IV characteristics of the ZnO NRs prepared at different reaction temperatures in dark and under UV illumination (λ=365 nm) follow the power law, i.e., IαV r . An enhanced ultraviolet photodetection has been observed in the nanorods fabricated at the highest reaction temperature of 600 °C. The sample prepared at highest reaction temperature of 600 °C exhibits UV photosensitivity value (photo-to-dark current ratio) of around 1.18×103, which is much higher in magnitude compared to that of the samples prepared at lower reaction temperatures. The enhanced photoconductivity may be assigned to the development of uniformity and homogeneity of the nanorods. Further development of such ZnO nanostructures can form the basis of promising prototype luminescent and UV photodetecting devices.  相似文献   

16.
Two stable phases of cobalt oxide nanoparticles of controlled sizes have been synthesized using environmentally friendly inorganic precursor. Structural characterization using X-ray diffraction (XRD) shows a single-phase spinal Co3O4 structure up to annealing temperature of 800 °C and a mixed phase of Co3O4 and CoO particles for T>900 °C. Single-phase CoO nanoparticles are also obtained by annealing the particles at a temperature >900 °C and cooling in inert atmosphere. Average macro- and micro-strain were estimated using XRD data. Macrostrain was found to be the minimum for particles annealed at 600 °C, whereas microstrain was found to decrease with increasing annealing temperature up to 900 °C. A correlation between the density of localized states (DOS) in the band gap and strain is expected because the origin of both strain and DOS are defects and bond length distortions. Sub-gap absorption measurement and model calculations have been used for the determination of DOS. For cobalt oxide nanoparticle samples we find a correlation between estimated strain and density of states in the band gap.  相似文献   

17.
The local environment of implanted 111Ag (t 1/2 = 7.45 d) in single-crystalline [0001] ZnO was evaluated by means of the perturbed angular correlation (PAC) technique. Following the 60 keV low dose (1 × 1013 cm−2) 111Ag implantation, the PAC measurements were performed for the as-implanted state and following 30 min air annealing steps, at temperatures ranging from 200 to 1050°C. The results revealed that 42% of the probes are located at defect-free SZn sites (ν Q ∼ 32 MHz, η = 0) in the as-implanted state and that this fraction did not significantly change with annealing. Moreover, a progressive lattice recovery in the near vicinity of the probes was observed. Different EFGs assigned to point defects were furthermore measured and a general modification of their parameters occurred after 600°C. The 900°C annealing induced the loss of 30% of the 111Ag atoms, 7% of which were located in regions of high defects concentration.  相似文献   

18.
Aluminum nitride nanorods were grown during rapid thermal annealing of multi-layered Al2S3 /BaS thin films. Depending on the thickness ratio between the BaS and Al2S3 layers, nanowires or straight nanorods were obtained. Typical dimensions for the nanorods were a diameter in the range of 50-100 nm and a length of 2-5 μm. The nanostructures are formed upon annealing at a relatively low temperature of 900 °C when aluminum evaporates from the thin film, but remains trapped between the thin film surface and the Si wafer, which is used as a support during the annealing. The nitrogen is provided by N2 gas flushed through the annealing chamber. High-resolution transmission electron microscopy showed crystalline, wurtzite-structured AlN nanorods. The growth mechanism in terms of thin film composition, annealing parameters and the role of catalysts is discussed.  相似文献   

19.
Abstract

It is well known that the macromolecular structure and the microstructure of the fillers play an important role in the mechanical properties of filled rubbers. This paper focuses on the dependence of the complex modulus of aged natural rubber vulcanizates on the filler network and polymer structure. Dynamic mechanical analysis (DMA) at 30°C, 50°C, and 70°C on the aged rubbers with/without prestrain showed the Payne effect, i.e., a storage modulus drop with increasing amplitude, and the appearance of a loss tangent maximum at strain of about a few percent. The storage modulus increased with the aging time at 70°C, 24 < 72 < 240 hr, in the case of nonprestrain. When the prestrain was applied, strain‐induced crystallization was generated that enhanced the storage modulus. As time passed, the prestrain relaxed and the crystalline structures began to disappear. After 72 hr, the crystalline structures had almost disappeared, and they had only a weak effect. Consequently, there existed a higher modulus for an aging time of 24 hr than 72 hr at testing temperatures of 30°C and 50°C. It was concluded that the storage modulus was determined by the postvulcanization, strain‐induced crystallization, aging, and relaxing time.  相似文献   

20.
Hall effect and electrical conductivity measurements of defect annealing in 1 ohm-cm n-type and 2 ohm-cm p-type silicon were made following neutron irradiation at ~50°C. Measurements were also made following 400-keV B11 ion implantation into a 100 ohm-cm n-type Si substrate. As the neutron fluence is increased the electrical effects of the damage eventually outweigh those of the chemical dopants, and further changes in the electrical properties become small. Conversely, significant electrical recovery upon annealing begins only when the electrical effects of the remaining damage become comparable to those of the chemical dopants. This condition will occur at higher anneal temperatures for higher fluence irradiations. The neutron fluence dependence of the damage and the annealing is interpreted in terms of the neutron energy per cm3. E, spent in atomic processes divided by the number/cm3, N, of electrically active dopants. When E/N ≤ 0.5 keV the electrical measurements show that the predominant defect annealing occurs below 400°C. However, when E/N > 0.5 keV electrical measurements emphasize the annealing at temperatures > 400°C. After 500°C annealing, energy levels in neutron damaged Si are observed at Ev +0.1 and Ev +0.15 eV in p-type and at Ec -0.33 eV in n-type Si. Application of the E/N criteria to room temperature implant-doped Si predicts that the electrical effects will be dominated by lattice damage even if all the implanted ions are substitutional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号