首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dielectric elastomers (DE) are a new type of electro-active material, which is able to produce a large degree of deformation under electrical stimulation. The thermal, mechanical, and dielectric properties of the most widely used dielectric acrylic elastomer (VHB 4910), commercially available from the company 3M, were studied by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and broadband dielectric spectroscopy (BDS) analyzer, respectively. DSC experiments on the VHB 4910 showed a glass transition at about ?40°C. VHB 4910 started to lose weight at about 250°C from the TGA study. The results of DMA indicated the storage modulus of VHB 4910 increased with frequency and had a strong temperature dependence of elasticity. The dielectric constant of VHB 4910 increased as a function of temperature up to 0°C, followed by a drop till 100°C. The mechanical and electrical efficiency of dielectric elastomer actuators (DEA) of VHB 4910 were analyzed. It was demonstrated that the actuation performance is dominated by the mechanical properties of the elastomer and is less influenced by the frequency and the temperature dependence of the dielectric properties; this may be used to guide the design of actuator configurations, as well as the choice of actuator materials.  相似文献   

2.
The effect of supercritical CO2 on the electrical conductivity of poly(epichlorohydrin–Ethylene oxide–Allyl glycidal ether) terpolymer is investigated using dielectric spectroscopy. Impedance measurements were carried out in the frequency range from 100–10 MHz and the temperature range of ?35–70°C with intervals of 5°C. The experimental results of the dielectric constant and the dielectric loss were fitted with the Cole–Cole equation to obtain the maximum relaxation frequencies of the different relaxation processes. As a result of the CO2 treatment process, enhancement in the polymer chain mobility without noteworthy change in the glass transition temperature was determined. In addition, the level of the DC conductivity and the dielectric strength were increased. These effects were attributed to improvement in the chain dynamics, which arises from enhancement in the parallel conformation of macromolecules.  相似文献   

3.
M. Isik  E. Tugay  N. M. Gasanly 《哲学杂志》2016,96(24):2564-2573
Optical properties of GaSe single crystals have been investigated using temperature-dependent transmission and room temperature reflection measurements in the wavelength range of 380–1100 nm. The analysis of the absorption data at room temperature showed the existence of indirect transitions in the crystal with energy band gap of 1.98 eV. Temperature dependence of the transmission measurements revealed the shift of the absorption edge toward lower energy as temperature is increased from 10 to 280 K. The rate of change of the indirect band gap was found as γ = ?6.6 × 10?4 eV/K from the analysis of experimental data under the light of theoretical relation giving the band gap energy as a function of temperature. The absolute zero value of the band gap energy and Debye temperature were calculated from the same analysis. The Wemple–DiDomenico single-effective-oscillator model applied to refractive index dispersion data was used to determine the oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index values.  相似文献   

4.
The problem of identifying experimental results on studying frequency dependences of the real and imaginary parts of dielectric permittivity concerning the correspondence to one of accepted frequency dispersion models: Debye, Cole–Cole, Davidson–Cole, and Havriliak–Negami models is considered. Based on expressions for components of complex dielectric permittivity with the use of mathematical analysis, a sequence of steps for the determination of the following characteristic parameters of the generalized Havriliak–Negami model is developed: static ε S and high-frequency ε dielectric permittivity, frequency dispersion indices α and β, and relaxation time τ. As an example, the parameters ε S , ε, α, β, and τ are calculated for a sample of a frozen disperse medium based on fine-grained quartz powder at a humidity of 13% in a temperature range from –140 to 0°C.  相似文献   

5.
A ceramic SmAlO3 (SAO) sample is synthesized by the solid-state reaction technique. The Rietveld refinement of the X-ray diffraction pattern has been done to find the crystal symmetry of the sample at room temperature. An impedance spectroscopy study of the sample has been performed in the frequency range from 50 Hz to 1 MHz and in the temperature range from 313 K to 573 K. Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The Cole–Cole model is used to analyze the dielectric relaxation mechanism in SAO. The temperature-dependent relaxation times are found to obey the Arrhenius law having an activation energy of 0.29 eV, which indicates that polaron hopping is responsible for conduction or dielectric relaxation in this material. The complex impedance plane plot of the sample indicates the presence of both grain and grain-boundary effects and is analyzed by an electrical equivalent circuit consisting of a resistance and a constant-phase element. The frequency-dependent conductivity spectra follow a double-power law due to the presence of two plateaus.  相似文献   

6.
The static dielectric constant and the temperature and pressure derivatives of the static dielectric constant of KBr have been measured at several temperatures between 4·3°K and room temperature. The sample was prepared in the form of a three-terminal parallel-plate capacitor and the dielectric constant was determined from measurements of the capacitance with a high precision bridge. The dielectric constant decreases with temperature as does the magnitude of the temperature dependence and the magnitude of the pressure dependence. The data were used to calculate the fixed-volume temperature derivative of the dielectric constant. This quantity, (? ln ε/?T)v, exhibiting lattice-anharmonicity effects, decreases slightly from its room temperature value as the temperature is lowered, rises to a maximum value at about 33°K and then decreases rapidly at lower temperatures.  相似文献   

7.
Undoped zinc oxide has been prepared at various growth temperatures by a conventional sintering process. The crystal structures of the prepared samples were studied by X-ray diffraction. The frequency-dependent dielectric dispersion of all the sintered ZnO ceramics was investigated in the temperature range from ?100 to 30 °C and in the frequency range from 1 Hz to 10 MHz by broadband dielectric spectroscopy. An analysis of the complex permittivity and electric modulus as a function of frequency has been performed assuming a distribution of relaxation times. The pellet sintered at 900 °C showed the lowest value of the dielectric strength. The temperature dependent of the parameter α is discussed. While the charge transport through the grain and grain boundary regions was examined by impedance spectroscopy. Activation energy values extracted from conduction measurements were found to be in the range of 0.09 and 0.3 eV.  相似文献   

8.
The bis (3-dimethylammonium-1-propyne) pentachlorobismuthate (III) exhibits a structural phase transition at T1?=?(337?±?2?K), which has been characterized by differential scanning calorimetric, X-ray powder analysis, AC conductivity and dielectric measurements. The dielectric dispersion yielded the real and imaginary parts of impedance of (C5H10N)2BiCl5 in the form of a semicircle in a complex plane. Besides, a Cole?CCole plot was observed at frequencies ranging from 209?Hz to 5?MHz, whose result was found to fit the theoretical resistor?Ccapacitor parallel circuit model. The temperature dependence of the electrical conductivity in the different phases follows the Arrhenius law. The frequency-dependent conductivity data were fitted in the modified power law: $ \sigma = {\sigma_{dc}} + {B_1}(T){\omega^{{s_1}}} + {B_2}(T){\omega^{{s_2}}} $ . The imaginary part of the permittivity constant is analyzed with the Cole?CCole formalism. With regard to the modulus plot, it can be characterized by full width at half height or in terms of a non-exponential decay function $ \phi (t) = \exp {\left( {\frac{{ - t}}{{{\tau_\sigma }}}} \right)^\beta } $ . Besides, the activation energy responsible for relaxation has been evaluated and found to be close the DC conductivity.  相似文献   

9.
a-plane ZnO layers were successfully grown, by plasma-assisted molecular beam epitaxy, on r-plane (011–2) sapphire substrates. Several features attributed to the A, B and C free excitonic transitions are identified through temperature-dependent photoluminescence (PL) and reflectivity measurements. The temperature dependence of the peak energy positions of these transitions was studied from 8 K to 300 K. So, the PL peak energy of the A free exciton was plotted and fitted with a Varshni empirical equation. In the σ polarization (Ec), for which A and B are allowed, the reflectivity spectrum measured at 8 K was fitted by using a program based on the theory of the spatial resonance dispersion Hopfield model. Our results indicate that the A and B free excitonic features are at a higher energy than those in ZnO on c-oriented sapphire and show a good PL even at 250 K. These results also show that the new and intense emission peak observed in the region of the first phonon replica (3.33–3.28 eV) and identified as a stacking fault in the epilayer disappears at high temperature above 150 K.  相似文献   

10.
The dependencies of complex dielectric functions (the dielectric constant, ε 1, and the dielectric loss, ε 2), on frequency and temperature of zinc phthalocyanine (ZnPc) thin films sandwiched between either gold or aluminum Ohmic-electrode contacts have been investigated in the temperature range of 93–470 K and frequency range 0.1–20 kHz. It is found that both values of ε 1 and ε 2 decrease with increasing frequency and increase with decreasing temperature. The rate of change depends greatly on the temperature and frequency ranges under consideration. Around room temperature, neither ε 1 nor ε 2 show any appreciable change through the whole range of frequencies. Thus, the dielectric dispersion is found to include of both dipolar and interfacial polarizations. The dependencies of both dielectric functions on frequency at different temperatures were found to follow a universal power law of the form ω n , where the index 0<n≤?1. This indicates that the correlated barrier hopping (CBH) model is a suitable mechanism to describe the dielectric behavior in ZnPc films. Furthermore, the results of the dielectric response indicate that polarization in these films could be in the form of non-Debye polarization. However, the Debye polarization can be traced below room temperature. The obtained results of the relaxation-time, τ, dependency on temperature have shown that a thermally-activated process may be dominated in ZnPc thin films conduction at high temperatures. Partial phase transition (from α- to β-phase) has been observed around 400 K in molecular relaxation-time, τ, and optical dielectric constant, ε . Arrhenius behavior has been observed for all the dielectric loss and conductivity relaxation-times above room temperature and their activation energies are explained and reported. The optical dielectric constant ε was found to increase with temperature.  相似文献   

11.
Samples of the system CuFe2−xCrxO4 where x = 0.0, 0.2, 0.4, 0.6 and 0.8 were prepared. The dielectric constant and dielectric loss were measured at different frequencies and temperatures from room temperature to 600 K. The dielectric constant was measured using the phase detector technique (lock-in amplifier). The results showed that the dielectric loss decreases with increasing frequency and Cr substitution. The dielectric constant decreases with both increasing frequency and Cr substitution at room temperature. At moderate temperatures, the dielectric constant shows a dispersion peak ′max, and this peak shifted to higher frequency with increasing temperature. The results are explained in the light of the fact that the dielectric polarization process is similar to that of conduction. The appearance of the dispersion peak is related to the contribution of two types of charge carriers.  相似文献   

12.
A series of samples of HoFe1?x Ni x O3 (x = 0.0, 0.1, 0.3) were prepared using the solid-state reaction technique to understand the structural, dielectric and conductivity properties before and after gamma irradiation of accumulated dose of 625 KGy. The X-ray diffraction confirms that all the samples exist in single-phase orthorhombic structure having space group Pbnm. With increasing dopant Ni, the unit cell volume and lattice parameters undergo small change. X-ray analysis show change in the interplanar spacing and full width at half maximum values after gamma irradiation. The Raman spectra of the samples show modifications after gamma irradiation. It can be easily seen that after gamma irradiation intensity, peak width are completely altered by gamma-absorbed dose. Measurement of dielectric loss and dielectric constant at room temperature was performed before and after gamma irradiation in the frequency range of 20 Hz–1 MHz. It is observed that the value of dielectric constant decreases after irradiation. The ac conductivity is estimated from the dielectric constant and loss tangent. Exposure to gamma radiation results in substantial modification in the physical properties of the Ni-doped Ho-based orthoferrites.  相似文献   

13.
The present paper undertakes the study of (C12H12N)2CuCl4, which is a new hybrid compound. It is synthesized and characterized by single-crystal X-ray diffraction, Hirshfeld surface analysis, and FT-IR, FT-Raman, and impedance spectroscopies. It is crystallized in the monoclinic system with C2/c space group. Its crystal structure was determined and refined down to an R value of 0.05 and a wR value of 0.14. The structure can be described by the alternation of two different, cationic–anionic layers parallel to (110) plan. This complex is assembled into 3D supramolecular architecture by hydrogen bonds (N–H…Cl, C–H…Cl) and π–π interactions. Hirshfeld surface analyses and fingerprint plots are used for decoding intermolecular interactions in the crystal network and contribution of component units for the construction of the 3D architecture. The presence of different functional groups and the nature of their vibrations were identified by FT-IR and FT-Raman spectroscopies. The material is characterized by impedance spectroscopy technique measured in 209–500 MHz frequency and 296–390 K temperature ranges. In addition, the Cole–Cole (Z? versus Z?) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R) and constant phase elements (CPEs). The close values of activation energies obtained from the analysis of equivalent circuit data confirm that the transport is through ion hopping mechanism in the bis (4-benzylpyridinium) tetrachlorocuprate.  相似文献   

14.
In order to explain experimental data of dielectric properties of water in the microwave region at temperature from 0 up to 90 °C and at frequencies from 9.5 to 75.4 GHz, we propose a new method. This method is based on normalizing all considered experimental data and presenting them in a sole Cole–Cole plot. The normalizing relation is derived with supposition that there exists a sole Debye dispersion region. As the result of this normalization, we present the data of various experimental groups made at various temperatures and frequencies, and, hence, we get the possibility to process at the same time various experimental data. The analysis carried out in wide frequency range from ωτ1 to ωτ≈10 showed that dielectric permittivity of water cannot be completely explained in the model of a sole Debye relaxation region. It was shown that it is enough to suppose two relaxation Debye regions. The processing of experimental data allowed us to determine the parameters of these regions.  相似文献   

15.
The dielectric relaxation spectroscopes of CdxSe70−xTe30 (where x = 0, 5, 7, 10) alloy have been investigated in the temperature range 298-373 K and in the frequency range 100 Hz to 100 kHz near the percolation threshold. The frequency and temperature dependence on the dielectric constant showed a Debye dielectric relaxation process. Using Debye relation, the dielectric constant (?′), the most probable relaxation time (τ) and the barrier height (W) were estimated for binary ternary chalcogenide systems.In addition, the analysis of the results suggests that the effect of Cd content on electronic conduction of the system. The experimental results support to some extent the above criterion in the case of Cd-Se-Te ternary alloy.  相似文献   

16.
The copper monophosphate compound, α-AgCuPO4, was prepared by the conventional solid-state reaction. The purity of the compound was checked by X-ray diffraction technique (XRD). Detailed dielectric and electrical properties of the compound were analyzed as a function of frequency (209 Hz–1 MHz) and temperature (343–514 K). The AC conductivity has been fitted and studied using Jonscher’s equation, whose exponent n varied with the temperature, showing that the overlapping large polaron tunneling model (OLPT) is the appropriate model to describe the electrical conduction mechanism.  相似文献   

17.
O. Checa  R. A. Vargas  J. E. Diosa 《Ionics》2014,20(4):545-550
The dispersion curves of the dielectric response for KHSeO4 were obtained in the radio frequency range at several isotherms below the fast proton conducting phase (T?<?415 K). The results reveal a distinct dielectric relaxation at low frequency, which is about 682 Hz at 320 K, and then, it shifts to higher frequencies (~10 kHz) as the temperature increases. The f max vs. reciprocal T shows an activated relaxation process with an activation energy of 0.5 eV, which is in close agreement with that associated with transport of charge carriers. We suggest that the observed dielectric relaxation could be attributed to polarization induced by the proton jump and selenate tetrahedral reorientations. The displacement of mobile H+ proton accompanied by SeO 4 ??2 tetrahedra reorientations creates structural distortion in both sublattices which induce localized dipoles like HSeO 4 ? .  相似文献   

18.
The dielectric dispersions of 5% aqueous solutions of egg-white lysozyme have been investigated at three different pH of 3.5, 7.0 and 11.0 respectively. The experiments were performed over a frequency range 0.1 – 50 MHz and at a uniform temperature of 20°C. The dielectric data were fitted to the Debye and Cole-Cole structural equations and the fitted parameters have been presented. Results showed that the dielectric properties of the lysozyme molecules were influenced by changes in pH, and these have been discussed in the light of known aggregation characteristics of the protein in aqueous solution.  相似文献   

19.
A definite discrepancy of dielectric constant along a-axis of tetragonal BaTiO3 between several MHz and Raman frequency region is found. By assuming a relaxational dispersion of Debye type, temperature dependence of relaxation time is obtained. This relaxational dispersion strongly suggests the existence of a central mode of which width decreases and height increases when the tetragonal-orthorhombic transition is approached.  相似文献   

20.
Nanocelluloses are potential candidates for applications in flexible electronic due to their unique physical and mechanical properties. However, electrical properties of these materials have not investigated thoroughly to study their electrical properties. In the current work, electrical properties of nanocellulose films prepared from bagasse pulp were studied and compared with those of bagasse pulp fibers. Two kinds of nanocelluloses were used in the current study: microfibrillated cellulose (MFC) and TEMPO‐oxidized nanofibrillated cellulose (NFC). The crystallinity, grain size, and morphology of the different nanocelluloses were studied using X‐ray diffraction and transmission electron microscopy techniques. The dc‐, ac‐ electrical conductivity, dielectric constant ?′, and dielectric loss ?″ of non‐plasticized and glycerol‐plasticized nanocellulose films were studied in the temperature range from 298 to 373 K and in the frequency range from 0.1 KHz to 5 MHz. The results showed that the dc‐ electrical conductivity verifies Arrhenius equation and the activation energies varied in the range of 0.9 to 0.42 eV. Ac‐electrical conductivity increased with frequency and fitted with power law equation, which ensures that the conduction goes through hopping mechanism. The dielectric constant decreased with increasing frequency and increased with increasing temperature, probably due to the free movement of dipole molecular chains within the cellulose fiber. Glycerol‐plasticized NFC (NFC‐G) film had the highest dielectric constant and ac‐electrical conductivity values of 79 800 and 2.80× 10?3ohm?1 cm?1, respectively. The high values of dielectric constant and conductivity of the prepared films support their use in electronic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号