首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
以金属醋酸盐为原料, 尿素为沉淀剂, 采用水热法辅助高温煅烧制备了三维微纳结构富锂锰基层状材料Li1.2Mn0.54Ni0.13Co0.13O2. 通过调整反应溶剂实现了镍钴锰碳酸盐前驱体向球状和纺锤体状的导向性生长. 其中纺锤体状富锂材料在0.1C倍率下首次放电容量接近300 mA·h/g, 在5C大倍率下放电容量能够达到92 mA·h/g, 在0.5C倍率下循环70周容量保留率能够达到85%.  相似文献   

2.
张永龙  胡学步  徐云兰  丁明亮 《化学学报》2013,71(10):1341-1353
由于电子和信息行业的需要, 过去十年锂离子电池得以快速发展. 目前, 锂离子电池仍呈现需求量增长的趋势, 对锂离子电池的安全性要求也越来越高. 因此促使寻找一种比碳/石墨材料更安全, 循环性能更理想的锂离子电池负极材料以满足电动汽车等新兴行业的需求. 尖晶石型Li4Ti5O12作为“零应变材料”具有优异的循环稳定性、价格便宜、容易制备、较高的平台电压和良好的安全性, 已成为锂离子动力电池负极材料的研究热点, 被认为是目前最具应用前景的锂离子电池负极材料. 由于形貌选择对于Li4Ti5O12材料的电化学性能有着至关重要的影响, 本文综述了球形、多孔(中空)结构、纳微结构、核壳结构等不同形貌Li4Ti5O12的合成及其性能研究的最新进展; 总结了各种形貌的优点, 已解决和待解决的问题, 常用合成方法以及各自的适应领域; 并对Li4Ti5O12材料的发展趋势进行了展望.  相似文献   

3.
用溶剂热法合成了作为一种新型锂离子电池负极材料的FeSb2纳米棒. 高分辨透射电镜(HRTEM)观察表明, FeSb2纳米棒的直径为20~40 nm, 长度为0.2~1.0 μm. 恒流充放电测试和循环伏安测试显示, FeSb2纳米棒首次可逆容量达到543 mAh•g−1, 经过10次循环后, 可逆容量保持在353 mAh•g−1. 虽然首次库仑效率仅为64%, 但仍明显优于FeSb2纳米颗粒, 并在10次循环后基本稳定在90%. FeSb2纳米棒在循环过程中仍可能发生粉化和破裂, 导致电极逐渐失效.  相似文献   

4.
Fe2O3作为锂电池负极材料具有诸多优点,但其较低的本征电导率和充放电循环过程中材料粉化使得其电化学储锂性能有待改善。 本文以具有花状微纳结构的铁醇盐为反应中间体,在空气气氛下烧结制备出具有花状微纳结构的铁基负极材料Fe2O3。 纳米花状的铁醇盐可以在低烧结温度下转化为目标产物,从而使得产物能够保持中间体的形貌。 300 ℃热处理条件下,所得样品在电流密度为200 mA/g时首次放电比容量为1360 mA·h/g,循环100次后的容量仍然达到515.6 mA·h/g;相比之下,450和800 ℃热处理所得样品100次循环后,比容量分别为247.6和206.7 mA·h/g。 微纳结构在增加材料的活性的同时,也能够抑制材料的粉化现象,因而所制得的材料表现出较大的比容量和良好的循环性能,为解决Fe2O3负极材料循环性能差的问题提供了思路。  相似文献   

5.
钠离子电池电极材料资源丰富,价格低廉. 然而,现阶段钠离子电池电极材料的性能还不理想,开发合适的电极材料是实现髙容量、长循环寿命钠离子电池的关键. 本文将以作者近期的研究工作为主,着重讨论几种微/纳米材料作为钠离子电池电极的性能及作用机理,并展望其今后的发展趋势.  相似文献   

6.
异质中空结构是指壳层由不同成分组成的空心微纳结构.通过对异质中空结构的表面性质和传质过程进行调控,可以调控经过中空结构的物质及能量.目前,异质中空结构在太阳能转化、气体传感、电化学储能和药物运输等领域展示出了优异的性能,对异质中空结构的设计与构建已成为新型多功能先进材料研究的前沿领域.本文总结了异质中空结构的种类、特征和性能优势,重点描述了各类异质中空结构的制备方法,并探讨了异质中空结构微纳材料面临的挑战及发展趋势.  相似文献   

7.
以硅藻土为原料, 通过镁热还原反应得到多孔硅, 进一步利用砂磨得到纳米多孔硅, 然后通过球磨将其与片状石墨和沥青均匀混合, 采用喷雾干燥技术造粒, 高温煅烧后制备了纳米多孔硅/石墨/碳复合微球. 对所得复合微球的结构和理化性质进行了表征. 纳米多孔硅/石墨/碳复合微球作为锂离子电池负极材料展示出较高的可逆容量、 优异的循环稳定性(100次循环后容量仍为790 mA·h/g, 容量保持率可达96.7%)及较好的倍率性能.  相似文献   

8.
本文设计并开发了一种气泡模板辅助合成方法,并应用于制备具有中空结构的自组装铁酸盐微球. 采用该方法获得了颗粒尺寸为350nm、颗粒分布均匀的中空微球MFe2O4(M=Co,Zn). 把这两种中空结构材料作为锂电池负极,组装成电池后,在2 Ag-1的电流密度条件下进行充放电测试,发现CoFe2O4的首次放电容量达到1339 mAhg?1,首次充电容量为936 mAhg?1,20次循环后充电容量保持在446 mAhg-1;与之相比,ZnFe2O4的首次放电容量达到1402mAhg?1,首次充电容量为992 mAhg?1,20次循环后充电容量保持在634 mAhg?1. 这两种材料的电化学性能均优于文献报道的同类实心材料的性能,表明自组装中空结构在改善材料锂电性能方面有明显优势.  相似文献   

9.
锂离子电池阴极材料Li1+xMn2O4的水热合成及表征   总被引:9,自引:1,他引:9  
刘兴泉  李庆  于作龙 《合成化学》1999,7(4):382-388
以化学MnO2(CMD)为Mn源,LiNO3和LiOH·H2O分别为Li源,采用无机水热合成法合成了锂离子二次电池的阴极材料Li1+xMn2O4(0≤x<1),并采用XRD,BET,TEM,TGA和电化学测试等手段对材料进行了表征。结果表明,在240℃水热晶化72h所得样品为棕红色,主要以γ-Mn2O3和层状LiMnO2形式存在。当Li/Mn摩尔比为1∶1时,其首次充电比容量达到205.35mAh/g,首次放电比容量达到178.80mAh/g。样品经650℃空气中焙烧6h后转变成以Li1+xMn2O4尖晶石型形式存在,其首次放电比容量下降到110mAh/g~120mAh/g。  相似文献   

10.
采用水热辅助溶胶凝胶法成功合成了石墨烯-Li2MnSiO4锂离子电池复合正极材料. 利用XRD,SEM及TEM等手段表征了复合正极材料的组成和形貌,并测试了不同氧化石墨烯复合量正极材料样品(质量分数为2%,4%,6%,8%,10%,及未复合氧化石墨烯)的电化学性能. 研究结果表明,石墨烯与Li2MnSiO4材料均匀地复合在一起;添加适量的氧化石墨烯能促使Li2MnSiO4粒子的分布趋向疏松,并形成微孔结构;氧化石墨烯复合量为6%时形成的石墨烯- Li2MnSiO4样品电化学性能最佳,扣除碳含量后,以10 mA/g为电流密度,首周放电比容量为166 mAh/g,循环20周后放电比容量仍保持在101 mAh/g. 此外,与石墨烯复合后的Li2MnSiO4材料倍率性能也得到了明显的改善. 石墨烯的存在提高了复合材料的导电性,提升了Li2MnSiO4正极材料的可逆嵌脱锂容量.  相似文献   

11.
采用水热法,在200℃,S/Mo摩尔比为4.3∶1的条件下,水热反应24 h,合成出由MoS_2纳米片堆积而成的花墙状多级纳米结构.利用X射线粉末衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和X射线光电子能谱仪(XPS)等对产物物相和形貌进行了表征.结果表明,MoS_2纳米片厚度约为10 nm,花墙状多级纳米结构可达十至数十微米,具有较好的均匀性.MoS_2多级纳米结构作为锂离子电池负极材料,在高电流密度下表现出良好的循环稳定性.  相似文献   

12.
以二元金属氧化物CoFe2O4为研究对象,通过次序模板法制备了CoFe2O4中空多壳层结构(HoMS)材料;对其形貌、结构进行了表征;考察了壳层结构与电化学性能之间的关系.电化学测试结果表明,双壳层-核CoFe2O4中空球具有最高的放电比容量(1354.4 mA·h/g)、优异的倍率性能和循环稳定性,其独特的结构优势和最优的空腔体积占有率使其在多次循环过程中能始终保持结构和电化学性质的稳定.  相似文献   

13.
通过高温热分解法制备了碳包覆氟化亚铁纳米复合材料(FeF2/C), 并对其结构、 形貌及电化学性能进行了研究. 结果表明, 该方法对FeF2实现了碳包覆, 且形成部分碳化铁(Fe3C). 电化学性能测试结果表明, 该材料在0.1C倍率下循环100周后的放电比容量达到246.7 mA·h/g, 相比于第2周的容量保持率高达93.6%, 具有良好的循环稳定性.  相似文献   

14.
During phase formation experiments under hydrothermal conditions (250 °C, 5d) in the systems HgO/MXO4/H2O (M = Co, Zn, Cd; X = S, Se), single crystals of the mercuric compounds (CdSO4)2(HgO)2H2O (I), (CdSeO4)2(HgO)2H2O (II), (CdSeO4)Hg(OH)2 (III), (CoSO4)2(HgO)2H2O (IV), (ZnSO4)2(HgO)2H2O (V), (ZnSeO4)2(HgO)2H2O (VI), and the mixed‐valent (ZnSeIVO3)(ZnSeVIO4)HgI2(OH)2 (VII) were obtained. The crystal structure determinations from X‐ray diffraction data revealed four unique structure types for these compounds. I and II crystallise isotypically in space group P2/n (a ≈ 7.85, b ≈ 6.28, c ≈ 10.5Å, β ≈ 102°), compound III crystallises in space group C2/m (a = 10.540(2), b = 9.0120(8), c = 6.1330(12)Å, β = 100.45(3)°), and the isotypic compounds IV, V and VI crystallise in space group Pbcm (a ≈ 6.15, b ≈ 11.3, c ≈ 13.1Å). Common with these three structure types are distorted octahedral [MO6] and tetrahedral XO4 building units which are organised in a layered assembly. Within the layers H bonding of OH groups or H2O molecules of the [MO6] octahedra leads to an additional stabilisation. Adjacent layers are separated by mercury atoms which are linearly bonded to two O atoms at short distances, forming either interconnecting [O‐Hg‐O] units which are part of [O‐Hg‐O] zig‐zag chains, or single [HO‐Hg‐OH] units (realised in compound III). VII is the only compound with mercury in oxidation state +1. It crystallises in space group C2/m (a = 17.342(3), b = 6.1939(10), c = 4.4713(8)Å, β = 90.154(3)°) and is made up of Hg22+ dumbbells, [ZnO4(OH)2] octahedra, and statistically distributed SeVIO4 and SeIVO3 groups as the main building units.  相似文献   

15.
Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles   总被引:16,自引:0,他引:16  
High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)(3), with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe(3)O(4)) nanoparticles. Similarly, reaction of Fe(acac)(3) and Co(acac)(2) or Mn(acac)(2) with the same diol results in monodisperse CoFe(2)O(4) or MnFe(2)O(4) nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe(3)O(4) can be oxidized to Fe(2)O(3), as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.  相似文献   

16.
由有机配体同金属离子作用构建的配位聚合物具有与无机微孔晶体类似的空旷骨架结构,并在非线性光学材料、磁性材料、超导材料及催化等诸多方面具有潜在的应用前景[1~4].在配位聚合物的合成中,配体的种类不仅直接影响到聚合物的合成,而且还涉及到聚合物的结构维数[5~7].目前,用来构建这些配合物的有机配体大多数都带有相同的可配位基团,较少应用具有两种以上的配位基团的有机配体.本文采用同时含有氮和氧两种配位原子的多齿配体氨基三乙酸[8~12],在水热条件下分别以Co2+和Ni2+作为组装基元,通过自组装合成了具有三维骨架结构的Na[M(nta)]·H2O [M=Co(1),Ni(2)]配位聚合物,并进行了结构与磁性研究.  相似文献   

17.
Four new lanthanide complexes, [Nd(4-Pyta)3(H2O)2] n (1), [Ce(4-Pyta)3(H2O)2] n (2), [Eu(4-Pyta)3(H2O)2] n (3) and [Gd(4-Pyta)3(H2O)2] n (4), have been obtained from reaction of lanthanide(III) nitrate with 4-Pyta (4-pyridylthioacetate) in water. Their structures were characterized by elemental analysis, infrared spectroscopy and single-crystal X-ray diffraction. The crystals belong to triclinic, space group P 1 and all complexes exhibit one-dimensional chains that arrange to form a three-dimensional supramolecular architecture by hydrogen bonds between the chains.  相似文献   

18.
Sodium magnesium selenite NaMg2(OH)(SeO3)2 and rubidium zinc selenite RbZn2(OH)(SeO3)2 were prepared by hydrothermal reactions. The crystal structures of the title compounds were determined by single‐crystal X‐ray diffraction. NaMg2(OH)(SeO3)2 crystallizes in the orthorhombic space group Pnma (no. 62) with lattice parameters a = 13.1919(10), b = 6.0415(4), c = 8.2182(6) Å, and Z = 4 and RbZn2(OH)(SeO3)2 crystallizes in the triclinic space group P$\bar{1}$ (no. 2) with lattice parameters a = 4.8698(5), b = 7.3446(8), c = 11.7796(12) Å, α = 82.554(3), β = 78.456(2), γ = 71.603(3)°,and Z = 2. The structure of NaMg2(OH)(SeO3)2 is a three‐dimensional framework consisting of edge‐sharing MgO6 octahedra and trigonal pyramidal SeO32– groups, whereas the structure of RbZn2(OH)(SeO3)2 is a two‐dimensional layers structure consisting of corner‐sharing [Zn2O7] dimers linked by trigonal pyramidal SeO32– groups. The compounds were characterized by the solid state UV/Vis/NIR diffuse reflectance, and FT‐IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号