首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Retention of an extended set of flavonoid compounds by octyl, octadecyl, phenyl and cyanopropyl-bonded, reversed-phase columns, with methanol, as the organic mobile phase modifier and acetic acid as the acid modifier is reported. Solvent strengths and useful ranges for both isocratic and gradient elution are determined. Relative retention is found to be independent of methanol volume fraction in the mobile phase for all the columns examined. Correlations between retention on different columns, specific selectivity effects and their dependence on molecular structure are analyzed. Practical applications for separation and identification are discussed.  相似文献   

2.
An empirical relationship was derived which relates properties of the mobile phase modifier to the chiral selectivity factor for a given analyte/chiral selector combination. Using carbon dioxide and heptane-based mobile phases, the effect of various mobile phase modifiers on Pirkle-type stationary phases may be accurately modeled using a two-parameter equation. Similar results are obtained using cellulosic stationary phases with carbon dioxide-based mobile phases. Modeling separations performed using heptane-based mobile phases with cellulosic stationary phases were not successful. The predictive ability of this modeling approach was demonstrated using novel modifiers and chiral analytes.  相似文献   

3.
The stoichiometric coefficients and apparent formation constants (Kf) of alpha-terpineol, thymol, geraniol and linalool complexes with beta-cyclodextrin (beta-CD) were determined using HPLC with a porous graphitic carbon (PGC) chromatographic support. Measurements were performed with four different methanol-water mobile phases. All the terpene derivatives under study form 1:1 guest-CD complexes. Graphs of Kf as a function of the mobile phase composition appeared different from those classically described for RP-C18 and suggest that the PGC stationary phase could play an active role in the complexation process. Solute-CD inclusion and solute-stationary phase interactions may be involved in this specific behavior.  相似文献   

4.
Trends in chromatographic shape selectivity with mobile phases consisting of mixtures of carbon dioxide and acetonitrile are investigated. Selectivity is evaluated as a function of mobile phase composition, temperature, and column bonding chemistry. SRM (standard reference material) 869a is used as a probe of shape selectivity, while the selectivity between triphenylene and o-terphenyl is used to investigate planarity selectivity. Four molecular mass 228 polyaromatic hydrocarbon isomers are used to investigate shape selectivity based on differences in length-to-breadth ratio. Shape selectivity trends as a function of temperature and column type are found to be similar to what is seen in reversed-phase liquid chromatography, while the trend seen as the amount of acetonitrile in the mobile phase increases is found to be different than in reversed-phase liquid chromatography. In addition, the effect of mobile phase density, i.e., solvent strength, on shape selectivity is investigated by examining shape selectivity as a function of density with neat carbon dioxide as the mobile phase.  相似文献   

5.
Trifluoroethoxylation of hexafluoropropene with 2,2,2-trifluoroethanol (TFE) were conducted using an alkali metal fluoride catalyst to produce CF3CHFCF2OCH2CF3. KF exhibited the highest yield and selectivity of CF3CHFCF2OCH2CF3, whereas LiF and NaF were inactive for the trifluoroethoxylation reaction. The same reaction also proceeded well in the presence of RbF or CsF, but yielded large amounts of olefinic and high molecular weight side products, implying that the size of alkali metal cation or the degree of MF dissociation plays an important role in determining the activity and the product composition. FT-IR and NMR experiments revealed that CsF interacts with TFE more strongly than KF through a hydrogen bonding. The experimental and spectroscopic results suggest that the degree of MF dissociation should be in the medium range for the selective production of CF3CHFCF2OCH2CF3 in high yield and selectivity.  相似文献   

6.
The capillary electrochromatographic (CEC) analysis of basic compounds on octadecyl-silica stationary phases (Hypersil ODS and Spherisorb ODS I) was studied. A basic drug (fluvoxamine) and one of its possible impurities were used as test compounds. With an eluent of acetonitrile-phosphate buffer (pH 7.0), the compounds could be baseline-separated; however, broad and tailing peaks were obtained. To minimise detrimental interactions with residual silanol groups, the pH of the mobile phase was lowered to 2.5, but the plate numbers were still quite low (<2.6x10(4) plates/m). Addition of a masking agent (hexylamine or triethylamine) to the mobile phase resulted in much better peak efficiencies (ca. 1x10(5) plates/m). Therefore, the influence of the amine concentration and pH of the mobile phase on the CEC performance (peak width, peak tailing, electroosmotic flow, selectivity) was investigated in detail. Highest efficiencies (2.8x10(5) plates/m) could be obtained with the Spherisorb column, while the Hypersil column offered a better selectivity. Furthermore, the results show that the residual silanol groups are (at least partly) responsible for the separation of the basic compounds and that the amount of injected sample has an unusually large effect on the peak efficiency. The usefulness of the system for impurity profiling was demonstrated with a mixture containing fluvoxamine and its stereoisomer (a possible impurity) at the 0.1% level. The general effectiveness of amine additives in CEC was illustrated by the separation of a mixture of five structurally different basic drugs yielding plate numbers in the 1x10(5)-3x10(5) plates/m range. Comparison with capillary electrophoretic analysis revealed a unique selectivity of the CEC system which is based on both electrophoretic mobility and chromatographic partitioning.  相似文献   

7.
An endcapped stationary phase is prepared by thermal immobilization of poly(methyltetradecylsiloxane) (PMTDS) onto a doubly zirconized silica support followed by endcapping using a mixture of hexamethyldisilazane and trimethylchlorosilane. The preparation of the Si-Zr(PMTDS)ec phase shows good repeatability with RSD <3.0% for carbon loadings and column efficiency. This new stationary phase has a lower density of residual hydroxyl groups, according to spectroscopic methods while basic compounds from the Tanaka and Engelhardt test mixtures are eluted with essentially symmetric peaks. Furthermore, the stability of the Si-Zr(PMTDS)ec stationary phase, measured using an accelerated aging test, is twice as great as the stability of a similar nonendcapped phase. The new phase shows promise for the separation of basic pharmaceuticals.  相似文献   

8.
A polysaccharide-based chiral stationary phase (Sepapak-4), with cellulose tris(4-chloro-3-methylphenylcarbamate) as chiral selector, has been investigated in liquid chromatography (LC). Its enantioresolution power was evaluated towards 13 basic amino-drugs with widely different structures and polarities, using polar organic mobile phases. After preliminary experiments, acetonitrile was selected as the main mobile phase component, to which a low concentration of diethylamine (0.1%) was systematically added in order to obtain efficient and symmetrical peaks. Different organic solvents were first added in small proportions (5–10%) to acetonitrile to modulate analyte retention. Polar organic modifiers were found to decrease retention and enantioresolution while hexane had the opposite effect, indicating normal-phase behaviour under these conditions. The addition of an organic acid (formic, acetic or trifluoroacetic acid) was found to strongly influence the retention of the basic amino drugs in these nonaqueous systems. The nature and proportion of the acidic additive in the mobile phase had also deep impact on enantioresolution. Therefore, the studied compounds could be subdivided in three groups in respect to the acidic additive used. All analytes could be enantioseparated in relatively short analysis times (10–20 min) using these LC conditions.  相似文献   

9.
Summary New polyacrylate liquid crystalline compounds were coated onto glass or fused-silica capillary columns as stationary phases and applied to supercritical fluid chromatography. These stationary phases, were very stable: no bleeding was observed at 200°C and up to 200kg/cm2 pressures of carbon dioxide mobile phase. The wide working range of the capillary column was extended below the g-n transition temperature. Isomeric compounds such as - and -methoxynaphthalene, anthracene and phenanthrene and several phenolic compounds were separated.  相似文献   

10.
The unique ability of macrocyclic ligands, such as the crown ethers and cryptands, to selectively complex alkali metal cations can be used as the basis for chromatographic separations of anions. Specifically, macrocycles which are adsorbed onto a reversed-phase column, form positively charged anion-exchange sites when they combine with eluent cations. Previously we have demonstrated gradient anion separations based on changing the column capacity during the course of the separation by altering the eluent cation, temperature, or organic modifier content using cryptand-based columns. Herein we report that excellent separations can also be achieved using 18-crown-6 based columns. In this column, anion retention increases with increasing eluent strength and organic modifier content. This observation is in keeping with the relatively moderate affinity of crown ethers for alkali metals when compared to cryptands. The separation of anions achieved by optimizing mobile phase variables shows that isocratic separations of anions on the crown-based column are almost as good as separations achieved only under gradient conditions on cryptand-based columns. Cation gradients provide additional improvements on the separations using the crown-based column.  相似文献   

11.
The solvation parameter model was used in this study to investigate various intermolecular interactions that influence retention on the standard C18 stationary phase for the solvent system acetonitrile:methanol (ACN:MeOH, 1:1). In comparison to the organic mobile phase modifiers acetonitrile, acetone, methanol, 2-propanol, and tetrahydrofuran, the solvent strength for the ACN:MeOH (1:1) solvent system was evaluated. To facilitate the interpretation of various intermolecular interactions that contribute to retention on a standard C18 stationary phase for the solvent system ACN:MeOH (1:1), system maps were constructed and compared with those of acetone, tetrahydrofuran, acetonitrile, 2-propanol, and methanol. The solvation parameter models were constructed for the ternary solvent system ACN:MeOH (1:1)-water, and in the models constructed, the coefficient of determination values were from 0.998 to 0.999, the Fisher statistic values for the models were from 1687 to 4015, and the standard error of the estimate values ranged from 0.022 to 0.029. The solvent system ACN:MeOH (1:1) has retention properties more similar to methanol than acetonitrile, indicating methanol's influence is more dominant.  相似文献   

12.
Summary The phase recognition mechanism of nine groups of position isomers on four crown ether polysiloxanes, OV-1701 and PEG 20M has been investigsated by measuring various thermodynamic parameters. The high selectivity of crown ether polysiloxane phases is due to hydrogen bonding and the extent of fitting between the analytes and the crown ethe cavity. The effects on selectivity of cavity size, heteroatoms and substituent groups on the crown ether are discussed.  相似文献   

13.
A detailed study was carried out to combine the unique selectivity of ceramic hydroxyapatite (CHA) with the separation power of selective displacement chromatography. A robotic liquid handling system was employed to carry out a parallel batch screen on a displacer library made up of analogous compounds. By incorporating positively charged, metal chelating and/or hydrogen bonding groups into the design of the displacer, specific interaction sites on CHA were targeted, thus augmenting the selectivity of the separation. The effect of different mobile phase modifiers, such as phosphate, sulfate, lactate and borate, were also investigated. Important functional group moieties and trends for the design of CHA displacers were established. Selective batch separations were achieved between multiple protein pairs which were unable to be resolved using linear gradient techniques, demonstrating the applicability of this technique to multiple protein systems. The specific interaction moieties used on the selective displacer were found to dictate which protein was selectively displaced in the separation, a degree of control not possible using a mono-interaction type resin in displacement chromatography. Mobile phase modifiers were also shown to play a crucial role, augmenting the selectivity of a displacer in a synergistic fashion. Column separations were carried out using selective displacers and mobile phase modifiers identified in the batch experiments, and baseline separation of the previously unresolved protein pairs was achieved. Further, the elution order in these systems was able to be reversed while still maintaining baseline separations. This work establishes a new class of separations which combine the selectivities of multi-modal resins, displacers/eluents, and mobile phase modifiers to create unique selectivity windows unattainable using traditional modes of operation.  相似文献   

14.
15.
Young TE  Ecker ST  Synovec RE  Hawley NT  Lomber JP  Wai CM 《Talanta》1998,45(6):1189-1199
Reversed phase high-performance liquid chromatography (RP-HPLC) is demonstrated for hydrophobic analytes such as aromatic hydrocarbons on a chemically bonded stationary phase and a mobile phase consisting of only water. Reversed phase liquid chromatography separations using a water-only mobile phase has been termed WRP-LC for water-only reversed phase LC. Reasonable capacity factors are achieved through the use of a non-porous silica substrate resulting in a chromatographic phase volume ratio much lower than usually found in RP-HPLC. Two types of bonded WRP-LC columns have been developed and applied. A brush phase was synthesized from an organochlorosilane. The other phase, synthesized from an organodichlorosilane, is termed a branch phase and results in a polymeric structure of greater thickness than the brush phase. A baseline separation of a mixture containing benzaldehyde, benzene, toluene, and ethyl benzene in less than 5 min is demonstrated using a water mobile phase with 12 000 plates generated for the unretained benzaldehyde peak. The theoretically predicted minimum reduced plate height is also shown to be approached for the unretained analyte using the brush phase. As an application, subcritical water extraction (SWE) at 200°C is combined with WRP-LC. This combination allows for the extraction of organic compounds from solid matrices immediately followed by liquid chromatographic separation of those extracted compounds all using a solvent of 100% water. We demonstrate SWE/WRP-LC by spiking benzene, ethyl benzene, and naphthalene onto sand then extracting the analytes with SWE followed by chromatographic separation on a WRP column. A sand sample contaminated with gasoline was also analyzed using SWE/WRP-LC. This extraction process also provides kinetic information about the rate of analyte extraction from the sand matrix. Under the conditions employed, analytes were extracted at different rates, providing additional selectivity in addition to the WRP-LC separation.  相似文献   

16.
17.
18.
The influence of mobile phase composition on the retention of selected test analytes in different normal- and reversed-phase chromatographic systems is studied. A novel adsorption model for an accurate prediction of the analyte retention in the column chromatography with binary mobile phase is proposed. Performance of the model is compared with the retention model reported in the literature. Both models are verified for different HPLC systems by use of three criteria: (a). the sum of squared differences between the experimental and theoretical data, (b). approximation of the standard deviation, and (c). the Fisher test.  相似文献   

19.
Summary The basis of the selective retention of perfluorinated compounds on perfluorinated bonded phases is examined. It is shown that the selective retention increases dramatically by increasing chain length and strand multiplicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号