首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Learning to perceive pitch differences   总被引:2,自引:0,他引:2  
This paper reports two experiments concerning the stimulus specificity of pitch discrimination learning. In experiment 1, listeners were initially trained, during ten sessions (about 11,000 trials), to discriminate a monaural pure tone of 3000 Hz from ipsilateral pure tones with slightly different frequencies. The resulting perceptual learning (improvement in discrimination thresholds) appeared to be frequency-specific since, in subsequent sessions, new learning was observed when the 3000-Hz standard tone was replaced by a standard tone of 1200 Hz, or 6500 Hz. By contrast, a subsequent presentation of the initial tones to the contralateral ear showed that the initial learning was not, or was only weakly, ear-specific. In experiment 2, training in pitch discrimination was initially provided using complex tones that consisted of harmonics 3-7 of a missing fundamental (near 100 Hz for some listeners, 500 Hz for others). Subsequently, the standard complex was replaced by a standard pure tone with a frequency which could be either equal to the standard complex's missing fundamental or remote from it. In the former case, the two standard stimuli were matched in pitch. However, this perceptual relationship did not appear to favor the transfer of learning. Therefore, the results indicated that pitch discrimination learning is, at least to some extent, timbre-specific, and cannot be viewed as a reduction of an internal noise which would affect directly the output of a neural device extracting pitch from both pure tones and complex tones including low-rank harmonics.  相似文献   

2.
Piano tones have partials whose frequencies are sharp relative to harmonic values. A listening test was conducted to determine the effect of inharmonicity on pitch for piano tones in the lowest three octaves of a piano. Nine real tones from the lowest three octaves of a piano were analyzed to obtain frequencies, relative amplitudes, and decay rates of their partials. Synthetic inharmonic tones were produced from these results. Synthetic harmonic tones, each with a twelfth of a semitone increase in the fundamental, were also produced. A jury of 21 listeners matched the pitch of each synthetic inharmonic tone to one of the synthetic harmonic tones. The effect of the inharmonicity on pitch was determined from an average of the listeners' results. For the nine synthetic piano tones studied, pitch increase ranged from approximately two and a half semitones at low fundamental frequencies to an eighth of a semitone at higher fundamental frequencies.  相似文献   

3.
Most studies of the musical pitch of harmonic tone complexes have utilized signals comparing two or more successive harmonics. The present study provides systematic data on melodic interval recognition by three musically experienced subjects with sounds whose missing fundamentals were represented by two nonsuccessive harmonics nf0,(n + m)f0, delivered to separate ears. Data were obtained in the ranges 1 less than or equal to n less than or equal to 9, 2 less than or equal to m less than or equal to 4, and 200 Hz less than or equal to f0 less than or equal to 1000 Hz. The data are interpreted in the light of three theories, the "optimum processor theory," the "virtual pitch theory," and the "pattern transformation theory." For each theory, a constraint on preformance is proposed based on interference between the "analytic" and "synthetic" pitch perception modes. The former is obtained with large spacings between harmonics, where listeners are more likely to perceive harmonics as individual tones, each having their own pitch. This degrades the listener's ability to hear the fundamental pitch.  相似文献   

4.
Pitch perception of complex tones and human temporal-lobe function   总被引:9,自引:0,他引:9  
Sixty-four patients with unilateral temporal-lobe excisions as well as 18 normal control subjects were tested in a missing fundamental pitch perception task. Subjects were required to indicate if the pitch of a pair of tones rose or fell. The excisions encroached upon Heschl's gyri in some cases, whereas, in others, this region was spared. All subjects included for study were able to perform well on a control task in which complex tones including a fundamental were presented. Stimuli for the experimental task, which was procedurally identical with the control task, consisted of several harmonic components spanning the same spectral range, but without a fundamental. Only subjects with right temporal lobectomy in whom Heschl's gyri were excised committed significantly more errors than the normal control group on this task. Patients with left temporal-lobe lesions or with anterior right temporal-lobe excisions were unimpaired. These results suggest that Heschl's gyri and surrounding cortex in the right cerebral hemisphere play a crucial role in extracting the pitch corresponding to the fundamental from a complex tone.  相似文献   

5.
Envelope-induced pitch shifts were measured for exponentially decaying complex tones consisting of two sinusoidal components with frequencies f1 = nf0 + 50 Hz and f2 = (n + 1) f0 + 50 Hz, where n equals 3, 4, or 5 and exponential decay rates were 0, 0.5, 1, and 2 dB/ms. Four subjects adjusted a sinusoidal comparison tone to match the virtual pitch of the (missing) fundamental and the pitches of the lower and upper partials f1 and f2. Pitch shifts for f1 are generally less, and pitch shifts for f2 always greater, than envelope-induced shifts observed in isolated sinusoidal tones of comparable frequency and envelope decay rate. Pitch-shift functions for virtual pitch are similar in magnitude and shape to average pitch-shift functions of the partials, which supports the idea that virtual pitch depends on spectral pitch.  相似文献   

6.
Two experiments investigated the role of the regularity of the frequency spacing of harmonics, as a separate factor from harmonicity, on the perception of the virtual pitch of a harmonic series. The first experiment compared the shifts produced by mistuning the 3rd, 4th, and 5th harmonics in the pitch of two harmonic series: the odd-H and the all-H tones. The odd-H tone contained odd harmonics 1 to 11, plus the 4th harmonic; the all-H tone contained harmonics 1 to 12. Both tones had a fundamental frequency of 155 Hz. Pitch shifts produced by mistuning the 3rd harmonic, but not the 4th and 5th harmonics, were found to be significantly larger for the odd-H tone than for the all-H tone. This finding was consistent with the idea that grouping by spectral regularity affects pitch perception since an odd harmonic made a larger contribution than an adjacent even harmonic to the pitch of the odd-H tone. However, an alternative explanation was that the 3rd mistuned harmonic produced larger pitch shifts within the odd-H tone than the 4th mistuned harmonic because of differences in the partial masking of these harmonics by adjacent harmonics. The second experiment tested these explanations by measuring pitch shifts for a modified all-H tone in which each mistuned odd harmonic was tested in the presence of the 4th harmonic, but in the absence of its other even-numbered neighbor. The results showed that, for all mistuned harmonics, pitch shifts for the modified all-H tone were not significantly different from those for the odd-H tone. These findings suggest that the harmonic relations among frequency components, rather than the regularity of their frequency spacing, is the primary factor for the perception of the virtual pitch of complex sounds.  相似文献   

7.
Three experiments investigated how the onset asynchrony and ear of presentation of a single mistuned frequency component influence its contribution to the pitch of an otherwise harmonic complex tone. Subjects matched the pitch of the target complex by adjusting the pitch of a second similar but strictly periodic complex tone. When the mistuned component (the 4th harmonic of a 155 Hz fundamental) started 160 ms or more before the remaining harmonics but stopped simultaneously with them, it made a reduced contribution to the pitch of the complex. It made no contribution if it started more than 300 ms before. Pitch shifts and their reduction with onset time were larger for short (90 ms) sounds than for long (410 ms). Pitch shifts were slightly larger when the mistuned component was presented to the same ear as the remaining 11 in-tune harmonics than to the opposite ear. Adding a "captor" complex tone with a fundamental of 200 Hz and a missing 3rd harmonic to the contralateral ear did not augment the effect of onset time, even though the captor was synchronous with the mistuned harmonic, the mistuned component was equal in frequency to the missing 3rd harmonic of the captor complex tone and it was played to the same ear as the captor. The results show that a difference in onset time can prevent a resolved frequency component from contributing to the pitch of a complex tone even though it is present throughout that complex tone.  相似文献   

8.
How the brain estimates the pitch of a complex sound remains unsolved. Complex sounds are composed of more than one tone. When two tones occur together, a third lower pitched tone is often heard. This is referred to as the "missing fundamental illusion" because the perceived pitch is a frequency (fundamental) for which there is no actual source vibration. This phenomenon exemplifies a larger variety of problems related to how pitch is extracted from complex tones, music and speech, and thus has been extensively used to test theories of pitch perception. A noisy nonlinear process is presented here as a candidate neural mechanism to explain the majority of reported phenomenology and provide specific quantitative predictions. The two basic premises of this model are as follows: (I) The individual tones composing the complex tones add linearly producing peaks of constructive interference whose amplitude is always insufficient to fire the neuron (II): The spike threshold is reached only with noise, which naturally selects the maximum constructive interferences. The spacing of these maxima, and consequently the spikes, occurs at a rate identical to the perceived pitch for the complex tone. Comparison with psychophysical and physiological data reveals a remarkable quantitative agreement not dependent on adjustable parameters. In addition, results from numerical simulations across different models are consistent, suggesting relevance to other sensory modalities.  相似文献   

9.
When all of the components in a harmonic complex tone are shifted in frequency by delta f, the pitch of the complex shifts roughly in proportion to delta f. For tones with a small number of components, the shift is usually somewhat larger than predicted from pitch theories, which has been attributed to the influence of combination tones [Smoorenburg, J. Acoust. Soc. Am. 48, 924-941 (1970)]. Experiment 1 assessed whether combination tones influence the pitch of complex tones with more than five harmonics, by using noise to mask the combination tones. The matching stimulus was a harmonic complex. Test complexes were bandpass filtered with passbands centered on harmonic numbers 5 (resolved), 11 (intermediate), or 16 (unresolved) and fundamental frequencies (FOs) were 100, 200, or 400 Hz. For the intermediate and unresolved conditions, the matching stimuli were filtered with the same passband to minimize differences in the excitation patterns of the test and matching stimuli. For the resolved condition, the matching stimulus had a passband centered above that of the test stimulus, to avoid common partials. For resolved and intermediate conditions, pitch shifts were observed that could generally be predicted from the frequencies of the partials. The shifts were unaffected by addition of noise to mask combination tones. For the unresolved condition, no pitch shift was observed, which suggests that pitch is not based on temporal fine structure for stimuli containing only high unresolved harmonics. Experiment 2 used three-component complexes resembling those of Schouten [J. Acoust. Soc. Am. 34, 1418-1424 (1962)]. Nominal harmonic numbers were 3, 4, 5 (resolved), 8, 9, 10 (intermediate), or 13, 14, 15 (unresolved) and F0s were 50, 100, 200, or 400 Hz. Clear shifts in the matches were found for all conditions, including unresolved. For the latter, subjects may have matched the "center of gravity" of the excitation patterns of the test and matching stimuli.  相似文献   

10.
The relation between the auditory brain stem potential called the frequency-following response (FFR) and the low pitch of complex tones was investigated. Eleven complex stimuli were synthesized such that frequency content varied but waveform envelope periodicity was constant. This was accomplished by repeatedly shifting the components of a harmonic complex tone upward in frequency by delta f of 20 Hz, producing a series of six-component inharmonic complex tones with constant intercomponent spacing of 200 Hz. Pitch-shift functions were derived from pitch matches for these stimuli to a comparison pure tone for each of four normal hearing adults with extensive musical training. The FFRs were recorded for the complex stimuli that were judged most divergent in pitch by each subject and for pure-tone signals that were judged equal in pitch to these complex stimuli. Spectral analyses suggested that the spectral content of the FFRs elicited by the complex stimuli did not vary consistently with component frequency or the first effect of pitch shift. Furthermore, complex and pure-tone signals judged equal in pitch did not elicit FFRs of similar spectral content.  相似文献   

11.
These experiments address the following issues. (1) When two complex tones contain different harmonics, do the differences in timbre between them impair the ability to discriminate the pitches of the tones? (2) When two complex tones have only a single component in common, and that component is the most discriminable component in each tone, is the frequency discrimination of the component affected by differences in residue pitch between the two tones? (3) How good is the pitch discrimination of complex tones with no common components when each tone contains multiple harmonics, so as to avoid ambiguity of pitch? (4) Is the pitch discrimination of complex tones with common harmonics impaired by shifting the component frequencies to nonharmonic values? In all experiments, frequency difference limens (DLCs) were measured for multiple-component complex tones, using an adaptive two-interval, two-alternative, forced-choice task. Three highly trained subjects were used. The main conclusions are as follows. (1) When two tones have the first six harmonics in common, DLCs are larger when the upper harmonics are different than when the upper harmonics are in common or are absent. It appears that differences in timbre impair DLCs. (2) Discrimination of the frequency of a single common partial in two complex tones is worse when the two tones have different residue pitches than when they have the same residue pitch. (3) DLCs for complex tones with no common harmonics are generally larger than those for complex tones with common harmonics. For the former, large individual differences occur, probably because subjects are affected differently by differences in timbre. (4) DLCs for harmonic complex tones are smaller than DLCs for complex tones in which the components are mistuned from harmonic values. This can probably be attributed to the less distinct residue pitch of the inharmonic complexes, rather than to reduced discriminability of partials. Overall, the results support the idea that DLCs for complex tones with common harmonics depend on residue pitch comparisons, rather than on comparisons of the pitches of partials.  相似文献   

12.
Studies of pitch perception often involve measuring difference limens for complex tones (DLCs) that differ in fundamental frequency (F0). These measures are thought to reflect F0 discrimination and to provide an indirect measure of subjective pitch strength. However, in many situations discrimination may be based on cues other than the pitch or the F0, such as differences in the frequencies of individual components or timbre (brightness). Here, DLCs were measured for harmonic and inharmonic tones under various conditions, including a randomized or fixed lowest harmonic number, with and without feedback. The inharmonic tones were produced by shifting the frequencies of all harmonics upwards by 6.25%, 12.5%, or 25% of F0. It was hypothesized that, if DLCs reflect residue-pitch discrimination, these frequency-shifted tones, which produced a weaker and more ambiguous pitch than would yield larger DLCs than the harmonic tones. However, if DLCs reflect comparisons of component pitches, or timbre, they should not be systematically influenced by frequency shifting. The results showed larger DLCs and more scattered pitch matches for inharmonic than for harmonic complexes, confirming that the inharmonic tones produced a less consistent pitch than the harmonic tones, and consistent with the idea that DLCs reflect F0 pitch discrimination.  相似文献   

13.
王健  关添  叶大田 《声学学报》2013,38(1):99-104
通过测量谐波复合音的基频辨别阈,探讨中等"高次谐波"的音高感知是否依赖于谐波的可分离性,以及掩蔽音对实验结果的影响。实验方法:在目标音单独存在或目标音与掩蔽音混合时,将刺激通过高、中、低三个带通滤波器以获得不同的谐波可分离度。实验刺激设计为5种基频差异和4种相位组合。五名被试均为年轻人,纯音听阈≤15 dB HL。研究结果发现:谐波复合音的基频辨别阈随着信号频段的上移而增大;目标音和掩蔽音的基频差异对基频辨别阈有显著影响;但相位影响不显著。结论:谐波的可分离性对基频辨别阈有显著影响,但中等"高次谐波"的音高感知不依赖于可分离性;混合音的大部分音高感知结果与兴奋模式的峰值大小密切相关。   相似文献   

14.
The influence of duration on the virtual pitch of complex tones was measured using an absolute identification paradigm. If performance with two-tone complexes is expressed in terms of a single central frequency-coding noise function, this function is found to depend on duration in about the same way as the pure-tone difference limen function. The function is further found to be a reasonably good predictor of pitch identification performance with multitone complexes. Another experimental finding was that subjects tend to switch to the analytic mode of pitch perception when complex tones are shortened (i.e., they tend to hear the spectral pitches instead of the virtual ones). A third finding was that with simultaneous complex tones the degradation of each pitch percept depends not only on duration and harmonic order of the tone but also on the harmonic order of the other tone.  相似文献   

15.
Complex tonal whistles are frequently produced by some odontocete species. However, no experimental evidence exists regarding the detection of complex tones or the discrimination of harmonic frequencies by a marine mammal. The objectives of this investigation were to examine the ability of a false killer whale to discriminate pure tones from complex tones and to determine the minimum intensity level of a harmonic tone required for the whale to make the discrimination. The study was conducted with a go/no-go modified staircase procedure. The different stimuli were complex tones with a fundamental frequency of 5 kHz with one to five harmonic frequencies. The results from this complex tone discrimination task demonstrated: (1) that the false killer whale was able to discriminate a 5 kHz pure tone from a complex tone with up to five harmonics, and (2) that discrimination thresholds or minimum intensity levels exist for each harmonic combination measured. These results indicate that both frequency level and harmonic content may have contributed to the false killer whale's discrimination of complex tones.  相似文献   

16.
This experiment examined the generation of virtual pitch for harmonically related tones that do not overlap in time. The interval between successive tones was systematically varied in order to gauge the integration period for virtual pitch. A pitch discrimination task was employed, and both harmonic and nonharmonic tone series were tested. The results confirmed that a virtual pitch can be generated by a series of brief, harmonically related tones that are separated in time. Robust virtual pitch information can be derived for intervals between successive 40-ms tones of up to about 45 ms, consistent with a minimum estimate of integration period of about 210 ms. Beyond intertone intervals of 45 ms, performance becomes more variable and approaches an upper limit where discrimination of tone sequences can be undertaken on the basis of the individual frequency components. The individual differences observed in this experiment suggest that the ability to derive a salient virtual pitch varies across listeners.  相似文献   

17.
An experiment was carried out, investigating the relationship between the just noticeable difference of fundamental frequency (jndfo) of three stationary synthesized vowel sounds in noise and the signal-to-noise ratio. To this end the S/N ratios were measured at which listeners could just discriminate a series of changes in fo in the range from 10% to 0.5%. Similar measurements were obtained for pulse trains and for pure tones as a reference for the results. A measure of S/N ratio based on an approximation of the critical bandwidth appeared to provide a fairly good predictor of the masked threshold of each signal, measured in a second experiment. Using this measure, it was found that a given change in the fundamental of a pulse train could be discriminated at a lower S/N ratio than in a pure tone with a frequency equal to that fundamental. The results for the vowel sounds were found to be in between those for a low-frequency pure tone and those for a pulse train. Owing to the signal-generation method (viz., changing fo by changing the sampling frequency), three cues could in principle be used to discriminate a change in the fundamental of a vowel: A change in the residue pitch, a change in the pitch of a single prominent harmonic, or a change in the spectral envelope of the signal. It can be inferred from the results that the subjects used that particular cue which yielded best performance. Which cue was optimal depended not only on the vowel but also on fo and on the presented change in fo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This paper describes an algorithm for producing pitch circularity using tones that each comprise a full harmonic series, and reports an experiment that demonstrates such circularity. Banks of 12 tones (i.e., scales) were created, with F0 varying in semitone steps. For each scale, as F0 descended, the amplitudes of the odd-numbered harmonics were reduced relative to the even-numbered ones by 3.5 dB for each semitone step. In consequence, the tone with the lowest F0 was heard as though displaced up an octave. In an experiment employing two such scales, all possible ordered tone pairs from each scale were presented, making 132 ordered tone pairs for each scale. Sixteen subjects judged for each tone pair whether the second tone was higher or lower than the first. The data derived from these pairwise comparisons were subjected to Kruskal's nonmetric multidimensional scaling, and excellent circularities were obtained. Individual differences in the subjects' judgments were also explored. The findings support the argument that musical pitch should be characterized as varying along two dimensions: the monotonic dimension of pitch height and the circular dimension of pitch class.  相似文献   

19.
This study examines subjects' ability to recognize the pitches of two missing fundamentals in two simultaneous two-tone complexes whose partials are distributed in various ways between subjects' ears. The data show that identification performance is affected on different levels. Limited frequency resolution in the peripheral auditory system can degrade performance, but only if none of the four stimulus partials is aurally resolved. Identification performance is only weakly dependent on the manner of distributing partials between the ears. In some cases it was found that, probably at a very central level (e.g., attention), the identification processes of both simultaneous pitches interfere with one another. Some subjects are more likely to identify the pitch of one two-tone complex when the harmonic order of the other complex is higher than when this harmonic order is lower. Finally, some subjects tend to hear the complex tones analytically, i.e., perceive pitches of single partials instead of the missing fundamentals for some distribution of partials between the ears.  相似文献   

20.
Dissociation of pitch from timbre in auditory short-term memory   总被引:4,自引:0,他引:4  
In three experiments, untrained listeners made same/different judgments on pairs of pure or complex tones with periods that eventually differed by +/- 4%. On each trial, the two test tones were separated by 4.3 s, during which other tones (I) were heard but had to be ignored. The period (p) of the first test tone was randomly selected between 1/600 and 1/300 s. The period of each I tone was randomly selected among four possible values, close to p (+/- 3% or 6% apart) in some conditions, and remote from p in other conditions. In addition, from condition to condition, the spectral content of the I tones was varied independently of their periods: The I tones could have the same harmonic content as the test tones, or a very different harmonic content. Subjects' performances were much better when the periods of the I tones were remote from p than when they were close to p, as expected from previous findings by D. Deutsch [e.g., Science 175, 1020-1022 (1972)]. But, more importantly, the relation between the spectral contents of the I tones and the test tones had, by itself, practically no effect on performance. Thus performance was affected by the pitches of the I tones, but not by their timbres. These results suggest that pitch is processed independently of timbre in auditory short-term memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号