首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Saturation transfer EPR spectroscopy (STEPR) provides a means for investigating weak spin-spin interaction between spin-labelled molecules because the spectral intensity is proportional to the effective spin-lattice relaxation time,T 1 eff. Rate equations for the spin population defferences yield equivalent results for the dependence ofT 1 eff on the physical (or chemical) and Heisenberg spin exchange rates and show thatT 1 eff depends on the extent of redistribution of saturation throughout the anisotropic spin label powder lineshape. This approach yields a particularly simple formulation for the dependence of the STEPR lineshape on slow rotational diffusion. The effects of spin exchange are readily distinguished from those of slow rotational diffusion because of the insensitivity of the STEPR lineshape in the former case. The characteristic dependence of the STEPR spectral intensity on spin concentration allows determination of the exchange rate and can be used for studying slow translational diffusion, e.g. of spin-labelled proteins. Dipolar relaxation induced by paramagnetic ions gives a linear dependence of the reciprocal spin label STEPR intensity on metal ion concentration. STEPR measurements with spin-labelled lipid molecules in gel phase membranes in the presence of Ni2+ ions yield reliable distance information and provide calibrations for use with other systems.  相似文献   

2.
The semiclassical and quantum mechanical NMR lineshape equations for a hindered methyl group are compared. In both the approaches, the stochastic dynamics can be interpreted in terms of a progressive symmetrization of the spin density matrix. However, the respective ways of achieving the same limiting symmetry can be remarkably different. From numerical lineshape simulations it is inferred that in the regime of intermediate exchange, where the conventional theory predicts occurrence of a single Lorentzian, the actual spectrum can have nontrivial features. This observation may open new perspectives in the search for nonclassical effects in the stochastic behavior of methyl groups in liquid-phase NMR.  相似文献   

3.
We present a method of simulating the EPR spectra of spin labels in liquids using direct convolution of hyperfine splitting with Lorentzian linewidths. The aim is to simulate the experimental lineshape by considering all spectrometer characteristics as well as inhomogeneous and homogeneous linewidth effects. A major advance in this method is the correction for the broadening produced by Zeeman modulation commonly used to obtain EPR signals; this allows experimenters much more freedom to optimize their experimental conditions for the best signal-to-noise ratio. Microwave power broadening (saturation) effects on the EPR lines are significant even at very low observer levels. Successful simulation requires that all contributions from unresolved hyperfine splittings be explicitly included. Inhomogeneous broadening is dealt with by including all spins that interact with the electron (as a set of superhyperfine interactions); there is no "effective Gaussian" to substitute for the correct superhyperfine interactions. The effects of spin exchange on the linewidth and lineshape can be observed and must be taken into account in order to extract the fundamental linewidths.  相似文献   

4.
A paramagnetic molecular voltmeter   总被引:1,自引:0,他引:1  
We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R(1)) and transverse (R(2)) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R(1) increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine.  相似文献   

5.
The ESR lineshape of one electron spin coupled by anisotropic hyperfine interaction to two nuclei is calculated when two different configurations of the molecule interchange by a simple reaction scheme. The spectrum calculation includes the anisotropic electron Zeeman interaction and the nonsecular terms of the electron spin. The lineshape, which simulates both a nonsaturated CW or a pulse experiment, is calculated numerically by using a density matrix theory within the Liouville formalism. The theory is tested against the X-band spectra of-CH2 in ZnAc single crystal for three different orientations of the magnetic field. The present theoretical lineshape reproduces all the experimental “forbidden” transitions and predicts that they are important for certain crystal orientations. The calculated reorientation barrier of the methylene in the present work is 7.17 kcal/mol which is closer to an estimated minimum value of 9 kcal/mol, than the previous value of 5–6 kcal/mol obtained by an analysis with the modified Bloch equations.  相似文献   

6.
The solid state NMR technique of rotational resonance (R2) has been used extensively to measure distances approaching 5-6 A between 13C nuclei in a variety of compounds including amyloidogenic peptides and membrane proteins. The accuracy of the distance information extracted from the time-dependent spin dynamics at R2 is often limited by the accuracy with which the relevant zero-quantum lineshape parameters are estimated. Here we demonstrate that measurement of spinning frequency dependent magnetization exchange dynamics provides data from which both distance and zero-quantum relaxation parameters can be extracted independently. In addition to providing more accurate distance information, this technique allows examination of the zero-quantum lineshape, which can indicate the presence of correlated relaxation or chemical shift distributions between dipolar-coupled sites. With this approach we have separated the contribution of dipolar couplings and zero quantum relaxation to R2 exchange curves. Thus, we have significantly improved the accuracy of the measurement of the intramolecular, internuclear distances between a pair of 13C's in two model compounds (N-acetyl-D,L-valine and glycylglycine.HCl) that lie in the distance range 4.6-4.7 A.  相似文献   

7.
利用自旋噪声谱技术研究了无缓冲气体133Cs原子气室的自旋动力学和展宽机制.在宏观原子气室中,自旋弛豫速率失谐频率谱的线型为高斯分布;在空间局域较强的微米气室中,自旋弛豫速率失谐频率谱的线型为洛伦兹分布.实验测量得到的自旋弛豫速率失谐频率谱的展宽约4 GHz,明显大于宏观原子气室中约度强烈依赖于激光相对于原子共振跃迁的频率失谐;在微米气室中,由于较强的均匀展宽,总噪声的失谐频率谱中心处出现明显的凹陷.通过建立简化的物理模型来计算微米气室的展宽机制,在实验与理论中解释了原子的均匀展宽特性.  相似文献   

8.
在自旋交换光泵过程中,多种参数可能会影响到最终可获得的超极化气体氙-129核自旋极化度.通过低场(0.002 T)核磁共振(NMR)系统研究了连续流动工作模式的自旋交换光泵过程,当混合工作气体流量为0.3 SLPM和0.5 SLPM时,实验测量得到最佳光泵泡工作温度;对于同位素富集和自然丰度的氙-129气体,核自旋极化度的建立时间分别为15 min和22 min.由于混合工作气体的压力以及组分会导致铷原子吸收线的频移和展宽,并且影响到其线型,实验通过低场NMR系统测量确定了用于自旋交换光泵的最佳激光工作波长.低场NMR测量为获得具有高核自旋极化度的超极化气体氙-129,并且能够用于人体肺部MRI研究提供了实验依据.  相似文献   

9.
One- and two-dimensional 13C exchange nuclear magnetic resonance experiments under magic-angle spinning (MAS) can provide detailed information on slow segmental reorientations and chemical exchange in organic solids, including polymers and proteins. However, observations of dynamics on the time scale of seconds or longer are hampered by the competing process of dipolar 13C spin exchange (spin diffusion). In this Communication, we show that fast MAS can significantly slow down the dipolar spin exchange effect for unprotonated carbon sites. The exchange is measured quantitatively using the centerband-only detection of exchange technique, which enables the detection of exchange at any spinning speed, even in the absence of changes of isotropic chemical shifts. For chemically equivalent unprotonated 13C sites, the dipolar spin exchange rate is found to decrease slightly less than proportionally with the sample-rotation frequency, between 8 and 28 kHz. In the same range, the dipolar spin exchange rate for a glassy polymer with an inhomogeneously broadened MAS line decreases by a factor of 10. For methylene groups, no or only a minor slow-down of the exchange rate is found.  相似文献   

10.
11.
A spin-polarized current changes the strength and direction of the exchange bias in spin valves with a current-in-plane geometry. The exchange bias can be manipulated and systematically changed by applying current pulses. The changes are nonmonotonic and asymmetric with respect to the directions of the applied field and current pulses. For different current pulses, different exchange-bias fields can be achieved in the same sample. Furthermore, for samples with different exchange bias, the bias field exhibits a dependence on the applied pulse. Since the strength of exchange bias is highly correlated to the micromagnetic state distribution of the antiferromagnet, we explain our observations by the spin torque exerted on the interfacial antiferromagnetic moments, excluding Joule heating and training effects.  相似文献   

12.
Off-resonance coherent decoupling of spin X in a heteronuclear SXN spin system can result in a multiplet with overlapping lines of spin Sand an overall shape similar to that of a doublet. Such lineshape distortions occur if certain multiple-spin coherences are present when the decoupler is switched on. The distortion could cause an apparent change in the multiplicity of an M + 1 multiplet of an SXNYM spin system when a selective decoupling of spins X is applied after a polarization transfer from spins X to spin S by INEPT or DEPT. Possibilities for suppressing the distortions are discussed.  相似文献   

13.
The spin Hall transport properties in a two-dimensional electron system with both Rashba spin-orbit coupling (SOC) and magnetic impurities are investigated. Electrons are scattered by impurities through an exchange interaction that leads to spin flip-flop processes and so changes the spin Hall effect induced by the SOC. The spin Hall conductance is calculated in a 4-terminal system using the Landauer-Buttiker formula and Green function approach. In comparison with the simulation results on nonmagnetic impurities doping systems, our results reveal that the spin Hall conductance is still nonzero in a system with a large density of magnetic impurities and a finite intensity of the exchange interaction between the electrons and impurities, and its sign may be altered when the doping density and interaction strength are large enough.  相似文献   

14.
Cross-polarization from a spin I=1/2 nucleus (e.g., 1H) to a spin S = 3/2 nucleus (e.g., 23Na) or a spin S = 5/2 nucleus (e.g., 27A1 or nO) in static powder samples is investigated. The results of conventional (single-quantum), three-quantum, and five-quantum cross-polarization experiments are presented and discussed. Based on a generalization of an existing theory of cross-polarization to quadrupolar nuclei, computer simulations are used to model the intensity and lineshape variations observed in cross-polarized NMR spectra as a function of the radio-frequency field strengths of the two simultaneous spin-locking pulses. These intensity and lineshape variations can also be understood in terms of the spin S = 3/2 or 5/2 nutation rates determined from experimental quadrupolar nutation spectra. The results of this study are intended as a preliminary step towards understanding single- and multiple-quantum cross-polarization to quadrupolar nuclei under MAS conditions and the application of these techniques to the MQMAS NMR experiment.  相似文献   

15.
16.
A combination of ESR lineshape studies and NMR relaxation time measurements permits the complete elucidation of the rotational diffusion tensor of a spin probe. The technique employs both paramagnetic (Cu(II)) and deuterated diamagnetic (Ni(II)) homologs of bis[pyrollidine-N-carbodithioato]metal(II) complexes. The lineshape and relaxation time measurements were analyzed in terms of spectral densities which in turn were inverted to give the principal elements of the diffusion tensor. The results obtained insights into the pitfalls of the commonly made assumption of isotropic rotational diffusion.  相似文献   

17.
In rapid scan EPR the magnetic field is scanned through the signal in a time that is short relative to electron spin relaxation times. Previously it was shown that the slow-scan lineshape could be recovered from triangular rapid scans by Fourier deconvolution. In this paper a general Fourier deconvolution method is described and demonstrated to recover the slow-scan lineshape from sinusoidal rapid scans. Since an analytical expression for the Fourier transform of the driving function for a sinusoidal scan was not readily apparent, a numerical method was developed to do the deconvolution. The slow scan EPR lineshapes recovered from rapid triangular and sinusoidal scans are in excellent agreement for lithium phthalocyanine, a trityl radical, and the nitroxyl radical, tempone. The availability of a method to deconvolute sinusoidal rapid scans makes it possible to scan faster than is feasible for triangular scans because of hardware limitations on triangular scans.  相似文献   

18.
The magnetic resonance lineshape of paramagnetic ion-nuclei in metals is calculated using the temperature Green functions method and is analyzed for limiting cases of fast and slow spin lattice relaxation of localized moments. The longitudinal spin lattice relaxation rate for paramagnetic ion-nuclei in type II superconductors due to the hyperfine coupling with local moments is calculated. The influence of the fluctuation coupling of electrons on relaxation of paramagnetic ion-nuclei in “dirty” type II superconductors is investigated in magnetic field slightly above the upper critical field Hc2.  相似文献   

19.
频率调制(FM)光谱技术中由于激光偏振态变化产生的残余幅度调制(RAM)使其在微量气体检测中的应用受到极大的限制。理论上详细分析了这一过程产生的原因,获得了存在RAM时FM光谱线型的表达式,同时给出N.C.Wong和J.L.Hall(W-H)方案抑制RAM后的FM光谱线型表达式;在实验上通过对乙炔气体的测量获得了存在RAM时的光谱线型,同时采用W-H方案对RAM进行了抑制,并获得了优化的光谱线型;最后基于理论结果对实验线型进行了拟合,两者差值小于信号峰峰值的4%。  相似文献   

20.
A two-dimensional (2D) zero field NQR separation of inhomogeneous and homogeneous lineshapes technique is described. The nuclear spin Hamiltonian for spinsI>1/2 in zero magnetic field consists to a good approximation only of the electric quadrupole term. The 2D separation technique enables a separate spectroscopic observation of a static and a randomly time-fluctuating dynamic part of the quadrupole interaction. The separation is based on the fact that nuclear spin precession under a static quadrupolar Hamiltonian can be time-reversed whereas this can not be achieved under the action of a randomly time-fluctuaing Hamiltonian. The 2D spectrum displays in theω 2-domain the inhomogeneously broadened lineshape, which is a convolution of the inhomogeneous static frequency distribution function and the homogeneous (adiabatic) lineshape. Theω 1-domain shows the pure homogeneous lineshape. A deconvolution of the inhomogeneous lineshape with the homogeneous one yields a pure static inhomogeneous frequency distribution function which is characteristic and theoretically known for many different models of disordered solids like glasses and incommensurate systems. This technique is important in studies where both lineshapes have comparable widths. The 2D NQR separation technique has been applied to75As in a proton glass Rb0.98(NH4)0.02H2AsO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号