首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This note addresses the problem of localization in quantum field theory; more specifically we contribute to the ongoing discussion about the most appropriate concept of localization which one should use in relativistic quantum field theory: through localized test functions or through the fields directly without localized test functions. In standard quantum field theory, i.e., in relativistic quantum field theory in terms of tempered distributions according to Gårding and Wightman, this is done through localized test functions. In hyperfunction quantum field theory (HFQFT), i.e., relativistic quantum field theory in terms of Fourier hyperfunctions this is done through the fields themselves. In support of the second approach we show here that it has a much wider range of applicability. It can even be applied to relativistic quantum field theories which do not admit compactly supported test functions at all. In our construction of explicit models we rely on basic results from the theory of quasi-analytic functions.  相似文献   

2.
A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis' quantum relativity. The recently proposed classical relativistic quantum theory of Prugoveki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (elementary particles). The main new aspect of this quantum mechanics is that provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that quarks should be considered as quantum relativistic particles.Supported by the Hungarian Academy of Sciences.  相似文献   

3.
Motivated by the theory of relativistic strings, the theory of a two-dimensional relativistic membrane whose action is proportional to the three-dimensional area it traces out in space-time is investigated both in Lagrangian and Hamiltonian formalisms. The quantum theory is developed using Dirac's method for constrained systems and the question of gauge choices is considered in some detail.  相似文献   

4.
The purpose of this paper is to review relativistic quantum theories with an invariant evolution parameter. Parametrized relativistic quantum theories (PRQT) have appeared under such names as constraint Hamiltonian dynamics, four-space formalism, indefinite mass, micrononcausal quantum theory, parametrized path integral formalism, relativistic dynamics, Schwinger proper time method, stochastic interpretation of quantum mechanics and stochastic quantization. The review focuses on the fundamental concepts underlying the theories. Similarities as well as differences are highlighted, and an extensive bibliography is provided.  相似文献   

5.
6.
Within the relativistic quasipotential approach to quantum field theory, a method is developed for solving a quasipotential equation for a nonlocal separable quasipotential simulating the interaction of two relativistic particles of unequal masses.  相似文献   

7.
An investigation of the invariance of quantum theory under the complex group reveals a natural origin of relativistic physics from quantum theory. Once such an origin of relativity is accepted, quantum limitations on the applicability of standard relativistic theory also become evident.  相似文献   

8.
A method to construct Euclidean covariant fields corresponding to a relativistic quantum field theory with arbitrary spins is presented. The constructed fields act on a state space with an indefinite inner product, they commute (or anticommute) totally and (except for hermitian Fermion fields) adjoint relativistic fields correspond to adjoint Euclidean fields. The cases where this method can be applied include all Gårding-Wightman theories invariant under space inversion.  相似文献   

9.
10.
Recent experiments have renewed interest in nonlocal interpretations of quantum mechanics. The experimental observation of the violation of Bell's inequalities implies the existence of nonlocality. Bohm expressed the nonlocal connection between quantum particles through the wave function and the quantum potential. This paper shows that a similar connection exists in a relativistic dynamical theory known as parametrized relativistic quantum theory (PRQT). We present an introduction to PRQT, derive the quantum potential for a system of relativistic scalar particles, and discuss alternative interpretations of nonlocality.  相似文献   

11.
Within the relativistic quasipotential approach to quantum field theory, a method is developed according to which a nonlocal separable quasipotential that represents the interaction between two relativistic particles of unequal masses can be reconstructed on the basis of the phase shift and bound-state energies.  相似文献   

12.
In this paper we study the relativistic quantum-mechanical interpretation of the solution of the inhomogeneous Euclidean Bethe-Salpeter equation. Our goal is to determine conditions on the input to the Euclidean Bethe-Salpeter equation so the solution can be used to construct a model Hilbert space and a dynamical unitary representation of the Poincaré group. We prove three theorems that relate the stability of this construction to properties of the kernel and driving term of the Bethe-Salpeter equation. The most interesting result is that the positivity of the Hilbert space norm in the non-interacting theory is not stable with respect to Euclidean covariant perturbations defined by Bethe-Salpeter kernels. The long-term goal of this work is to understand which model Euclidean Green functions preserve the underlying relativistic quantum theory of the original field theory. Understanding the constraints imposed on the Green functions by the existence of an underlying relativistic quantum theory is an important consideration for formulating field-theory motivated relativistic quantum models.This work supported in part by the U.S. Department of Energy, under contract DE-FG02-86ER40286  相似文献   

13.
A traversal time that has no problem of superluminality was advanced for particles to tunnel through potential barriers in the non‐relativistic quantum theory in a previous paper by C.‐F. Li and Q. Wang, Physica B 296 (2001) 356. This time is generalized in this paper to Dirac's relativistic quantum theory. Both evanescent and propagating cases are considered. It is shown that the traversal time in the evanescent case has much the same properties as in the non‐relativistic quantum theory and thus has no problem of superluminality. It also gets rid of the problem of superluminality in the propagating case. Comparisons with the dwell time, the group delay, and the velocity of monochromatic front are also made.  相似文献   

14.
The issue of the intrinsic nonlocality of quantum mechanics raised by J. S. Bell is examined from the point of view of the recently developed method of geometro-stochastic quantization and its applications to general relativistic quantum theory. This analysis reveals that a distinction should be made between the topological concept of locality used in formulating relativistic causality and a type of geometric locality based on the concept of fiber bundle, which can be used in extending the strong equivalence principle to the quantum domain. Both play an essential role in formulating a notion of geometro-stochastic propagation based on quantum diffusions, which throws new light on the EPR paradox, on the origin of the arrow of time, and on other fundamental issues in quantum cosmology and the theory of measurement.  相似文献   

15.
We apply a method analogous to the eikonal approximation to the Maxwell wave equations in an inhomogeneous anisotropic medium and geodesic motion in a three dimensional Riemannian manifold, using a method which identifies the symplectic structure of the corresponding mechanics, to the five dimensional generalization of Maxwell theory required by the gauge invariance of Stueckelberg's covariant classical and quantum dynamics. In this way, we demonstrate, in the eikonal approximation, the existence of geodesic motion for the flow of mass in a four dimensional pseudo-Riemannian manifold. These results provide a foundation for the geometrical optics of the five dimensional radiation theory and establish a model in which there is mass flow along geodesics. We then discuss the interesting case of relativistic quantum theory in an anisotropic medium as well. In this case the eikonal approximation to the relativistic quantum mechanical current coincides with the geodesic flow governed by the pseudo-Riemannian metric obtained from the eikonal approximation to solutions of the Stueckelberg–Schrödinger equation. The locally symplectic structure which emerges is that of a generally covariant form of Stueckelberg's mechanics on this manifold.  相似文献   

16.
It is shown that non-relativistic quantum mechanics can be treated as a kind of relativistic statistical theory, which describes the indeterministic motion of classical particles. The theory is relativistic in the sense that the relativistic notion of the state and two-time equations of motion are used. The principles and relations of quantum mechanics are obtained from the principles of statistics and those of classical mechanics.  相似文献   

17.
Starting from the fact that the geodesic structure of the projective space of quantum pure states gives a natural explanation for the fundamentality of spin 1/2 systems in relativistic quantum theory, and making use of the inducing construction for infinite-dimensional representations of groups in vector bundles over projective space, a proposal for unifying physical theory in terms of a possible derivation of relativistic physics from pure quantum theory is presented.  相似文献   

18.
BISWAJIT SAHU 《Pramana》2011,76(6):933-944
Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized two- species relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter H on the nature of solitary wave solutions is studied in some detail.  相似文献   

19.
Zubarev’s method of non-equilibrium statistical operator is applied to problems of relativistic kinetic theory. Within this method, a generalized relativistic quantum kinetic equation for the relativistic Wigner function is derived with taking into account the drift term of the Vlasov type and the collision integral of the second order in particle interaction. It is shown that this result holds as well for gauge invariant theories in the case of slowly changing fields. An advantage of the developed approach is exemplified by the consideration of relativistic nuclear matter within the Walecka and Nambu-Jona-Lasinio models. Typical relativistic effects like retardation, spin degrees of freedom and antiparticle evolution are taken into consideration.  相似文献   

20.

A new relativistic form factor for a bound two-particle system was obtained for the case of a vector current. The present consideration was performed within the relativistic quasipotential approach based on the covariant Hamiltonian formulation of quantum field theory by going over to the three-dimensional relativistic configuration representation for the case of interaction between two relativistic spinless particles of arbitrary mass.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号