首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermodynamic properties of methane hydrate in quartz powder   总被引:1,自引:0,他引:1  
Using the experimental method of precision adiabatic calorimetry, the thermodynamic (equilibrium) properties of methane hydrate in quartz sand with a grain size of 90-100 microm have been studied in the temperature range of 260-290 K and at pressures up to 10 MPa. The equilibrium curves for the water-methane hydrate-gas and ice-methane hydrate-gas transitions, hydration number, latent heat of hydrate decomposition along the equilibrium three-phase curves, and the specific heat capacity of the hydrate have been obtained. It has been experimentally shown that the equilibrium three-phase curves of the methane hydrate in porous media are shifted to the lower temperature and high pressure with respect to the equilibrium curves of the bulk hydrate. In these experiments, we have found that the specific heat capacity of the hydrate, within the accuracy of our measurements, coincides with the heat capacity of ice. The latent heat of the hydrate dissociation for the ice-hydrate-gas transition is equal to 143 +/- 10 J/g, whereas, for the transition from hydrate to water and gas, the latent heat is 415 +/- 15 J/g. The hydration number has been evaluated in the different hydrate conditions and has been found to be equal to n = 6.16 +/- 0.06. In addition, the influence of the water saturation of the porous media and its distribution over the porous space on the measured parameters has been experimentally studied.  相似文献   

2.
For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.  相似文献   

3.
In this study,a numerical model is developed to investigate the hydrate dissociation and gas production in porous media by depressurization.A series of simulation runs are conducted to study the impacts of permeability characteristics,including permeability reduction exponent,absolute permeability,hydrate accumulation habits and hydrate saturation,sand average grain size and irreducible water saturation.The effects of the distribution of hydrate in porous media are examined by adapting conceptual models of hydrate accumulation habits into simulations to govern the evolution of permeability with hydrate decomposition,which is also compared with the conventional reservoir permeability model,i.e.Corey model.The simulations show that the hydrate dissociation rate increases with the decrease of permeability reduction exponent,hydrate saturation and the sand average grain size.Compared with the conceptual models of hydrate accumulation habits,our simulations indicate that Corey model overpredicts the gas production and the performance of hydrate coating models is superior to that of hydrate filling models in gas production,which behavior does follow by the order of capillary coating>pore coating>pore filling>capillary filling.From the analysis of t1/2,some interesting results are suggested as follows:(1) there is a "switch" value(the"switch"absolute permeability) for laboratory-scale hydrate dissociation in porous media,the absolute permeability has almost no influence on the gas production behavior when the permeability exceeds the "switch" value.In this study,the "switch" value of absolute permeability can be estimated to be between 10 and 50 md.(2) An optimum value of initial effective water saturation Sw,e exists where hydrate dissociation rate reaches the maximum and the optimum value largely coincides with the value of irreducible water saturation S wr,e.For the case of Sw,Swr,e,there are different control mechanisms dominating the process of hydrate dissociation and gas production.  相似文献   

4.
活性炭中甲烷水合物的分解动力学   总被引:9,自引:0,他引:9  
刘犟  阎立军  陈光进  郭天民 《化学学报》2002,60(8):1385-1389
在封闭体系内,在初始分解压力0.1 MPa,温度范围276~265 K之间,测定了 五组甲烷水合物在活性炭中的解动力学数据。分析了甲烷水合物在活性炭中分解的 物理过程,提出了以微分方程表达的宏观分解动力学模型。使用单步积分的吉尔( Gear)方法解得微分方程的数值解,结合单纯形最优化方法拟合模型参数,模型计 算值与实验值符合良好。  相似文献   

5.
通过将水合物的分解过程看作是无固态产物层生成的气固反应过程, 结合粒径缩小的收缩核反应模型和分形理论, 建立了多孔介质中水合物降压分解的分数维动力学模型, 提出了基于水合物分解实验数据计算多孔介质分形维数的方法. 分别利用前人的甲烷水合物和CO2水合物降压分解实验数据, 对上述分数维动力学模型进行了验证. 计算结果表明, 用提出的方法所计算得到的多孔介质分形维数与前人的测定结果基本符合; 对甲烷水合物和CO2水合物的降压分解过程, 提出的分数维动力学分解模型得出了和实验结果基本一致的预测, 绝对平均误差(AAD)小于10%.  相似文献   

6.
Many tetrahydrofuran (THF) hydrate properties are similar to those of gas hydrates. In the present work THF hydrate dissociation in four types of porous media is studied. THF solution was cooled to 275.15 K with formation of the hydrate under ambient pressure, and then it dissociated under ambient conditions. THF hydrate dissociation experiments in each porous medium were conducted three times. Magnetic resonance imaging (MRI) was used to obtain images. Decomposition time, THF hydrate saturation and MRI mean intensity (MI) were measured and analyzed. The experimental results showed that the hydrate decomposition time in BZ-4 and BZ-3 was similar and longer than that in BZ-02. In each dissociation process, the hydrate decomposition time of the second and third cycles was shorter than that of the first cycle in BZ-4, BZ-3, and BZ-02. The relationship between THF hydrate saturation and time is almost linear.  相似文献   

7.
The results on a dissociation behavior of propane hydrates prepared from "dry water" and contained unreacted residual water in the form of ice inclusions or supercooled liquid water(water solution of gas) were presented for temperatures below 273 K.The temperature ramping or pressure release method was used for the dissociation of propane hydrate samples.It was found that the mechanism of gas hydrate dissociation at temperatures below 273 K depended on the phase state of unreacted water in the hydrate sample.Gas hydrates dissociated into ice and gas if the ice inclusions were in the hydrate sample.The samples of propane hydrates with inclusions of unreacted supercooled water only(without ice inclusions) dissociated into supercooled water and gas below the pressure of the supercooled water-hydrate-gas metastable equilibrium.  相似文献   

8.
The dissociation of gas and model hydrates was studied using a classical thermodynamic method and a calorimetric method, in various aqueous media including pure water, high concentration calcium chloride solutions and water-in-oil emulsions. Methane hydrate dissociation temperatures vs. pressure curves were determined using pressure vs. temperature measurements in a constant volume cell (PVT), and high pressure differential scanning calorimetry (DSC), at 5 to 10 MPa gas pressure and at temperatures ranging from -10 to +12°C. PVT and DSC results are in good agreement, and concordant with data available in literature. From a thermodynamic point of view, there are no measurable differences between bulk solutions and emulsions. From a kinetic point of view, due to the considerable surface of interface between the two phases, emulsions allow the formation of much greater amounts of hydrate than solutions, without any agitation. Model hydrate of trichlorofluoromethane was studied in 9 to 27 mass% calcium chloride solutions in emulsion in oil, using DSC under atmospheric pressure, at temperatures ranging from -20 to +5°C. A diagram of dissociation temperature vs. salt concentration is proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Accurate knowledge of hydrate phase equilibrium in the presence of inhibitors is crucial to avoid gas hydrate formation problems and to design/optimize production, transportation and processing facilities. In this communication, we report new experimental dissociation data for various systems consisting of methane/water/ethylene glycol and natural gas/water/ethylene glycol. A statistical thermodynamic approach, with the Cubic-Plus-Association equation of state, is employed to model the phase equilibria. The hydrate-forming conditions are modelled by the solid solution theory of van der Waals and Platteeuw. The thermodynamic model was used to predict the hydrate dissociation conditions of methane and natural gases in the presence of distilled water or ethylene glycol aqueous solutions. Predictions of the developed model are validated against independent experimental data and the data generated in this work. A good agreement between predictions and experimental data is observed, supporting the reliability of the developed model.  相似文献   

10.
The permeability in the methane hydrate reservoir is one of the key parameters in estimating the gas production performance and the flow behavior of gas and water during dissociation. In this paper, a three-dimensional cubic pore-network model based on invasion percolation is developed to study the effect of hydrate particle formation and growth habit on the permeability. The variation of permeability in porous media with different hydrate saturation is studied by solving the network problem. The simulation results are well consistent with the experimental data. The proposed model predicts that the permeability will reduce exponentially with the increase of hydrate saturation, which is crucial in developing a deeper understanding of the mechanism of hydrate formation and dissociation in porous media.  相似文献   

11.
Investigations into the structures of gas hydrates, the mechanisms of formation, and dissociation with modern instruments on the experimental aspects, including Raman, X-ray, XRD, X-CT, MRI, and pore networks, and numerical analyses, including CFD, LBM, and MD, were carried out. The gas hydrate characteristics for dissociation and formation are multi-phase and multi-component complexes. Therefore, it was important to carry out a comprehensive investigation to improve the concept of mechanisms involved in microscale porous media, emphasizing micro-modeling experiments, 3D imaging, and pore network modeling. This article reviewed the studies, carried out to date, regarding conditions surrounding hydrate dissociation, hydrate formation, and hydrate recovery, especially at the pore-scale phase in numerical simulations. The purpose of visualizing pores in microscale sediments is to obtain a robust analysis to apply the gas hydrate exploitation technique. The observed parameters, including temperature, pressure, concentration, porosity, saturation rate, and permeability, etc., present an interrelationship, to achieve an accurate production process method and recovery of gas hydrates.  相似文献   

12.
向水合物储层注入盐类溶液是水合物常规开采技术之一,所以必须掌握储层压力条件下盐类溶液中水合物分解条件及其影响因素.本文研究了NaCl、MgCl2、CaCl2氯盐溶液中甲烷水合物分解条件,结果表明NaCl(2.0、1.0、0.5 mol·L-1)、MgCl2 (1.0、0.5 mol·L-1)和CaCl2 (1.0、0.5 mol·L-1)溶液中甲烷水合物的分解温度比纯水中分别降低了(4.8、2.4、1.0 K (NaCl))、(5.3、1.5 K (MgCl2))和(4.3、1.8 K (CaCl2)).以van der Waals 和Platteeuw 热力学模型为基础,结合电解质溶液中水的活度方程(Pitzer-Mayorga 方程),给出了氯盐溶液中水合物分解条件热力学模型,进而比较了模型计算值与实验值,结果显示两者非常吻合.分析表明,氯盐溶液中离子静电作用产生的水分子溶剂化效应和盐析效应降低了水的活度而导致水合物分解温度降低.  相似文献   

13.
《Fluid Phase Equilibria》2006,242(2):123-128
The kinetic data of methane hydrate dissociation at various temperatures and pressures were measured in a sapphire cell apparatus by depressurizing method. When the temperature was higher than 0 °C, the experimental results showed that the hydrate dissociation rate was controlled by intrinsic dissociation reaction. When the temperature was lower than 0 °C, water generated from the hydrate dissociation would transform into ice rapidly at the surface of hydrate crystal. The released gas diffused from the hydrate and ice mixture to the bulk of gas phase. With the hydrate continuous dissociation, the boundary of ice–hydrate moved toward water/ice phase. The hydrate dissociation was controlled by gas diffusion, and the hydrate dissociation process was treated as a moving boundary problem. Corresponding kinetic models for hydrate dissociation were established and good agreements with experimental data were achieved.  相似文献   

14.
In order to study the nature of gas hydrate in porous media, the formation and dissociation processes of methane hydrate in loess were investigated. Five cooling rates were applied to form methane hydrate. The nucleation times of methane hydrate formation at each cooling rate were measured for comparison. The experimental results show that cooling rate is a significant factor affecting the nucleation of methane hydrate and gas conversion. Under the same initial conditions, the faster the cooling rate, the shorter the nucleation time, and the lower the methane gas conversion. Five dissociating temperatures were applied to conduct the dissociation experiment of methane hydrate formed in loess. The experimental results indicated that the temperature evidently controlled the dissociation of methane hydrate in loess and the higher the dissociating temperature, the faster the dissociating rates of methane hydrate.  相似文献   

15.
The effect of low-dosage water-soluble hydroxyethyl cellulose (approximate MW~90,000 and 250,000) as a member of hydroxyalkyl cellulosic polymer group on methane hydrate stability was investigated by monitoring hydrate dissociation at pressures greater than atmospheric pressure in a closed vessel. In particular, the influence of molecular weight and mass concentration of hydroxyethyl cellulose (HEC) was studied with respect to hydrate formation and dissociation. Methane hydrate formation was performed at 2℃ and at a pressure greater than 100 bar. Afterwards, hydrate dissociation was initiated by step heating from -10℃ at a mild pressure of 13 bar to 3℃, 0℃ and 2℃. With respect to the results obtained for methane hydrate formation/dissociation and the amount of gas uptake, we concluded that HEC 90,000 at 5000 ppm is suitable for long-term gas storage and transportation under a mild pressure of 13 bar and at temperatures below the freezing point.  相似文献   

16.
For the first time, the compositions of argon and methane high-pressure gas hydrates have been directly determined. The studied samples of the gas hydrates were prepared under high-pressure conditions and quenched at 77 K. The composition of the argon hydrate (structure H, stable at 460-770 MPa) was found to be Ar.(3.27 +/- 0.17)H(2)O. This result shows a good agreement with the refinement of the argon hydrate structure using neutron powder diffraction data and helps to rationalize the evolution of hydrate structures in the Ar-H(2)O system at high pressures. The quenched argon hydrate was found to dissociate in two steps. The first step (170-190 K) corresponds to a partial dissociation of the hydrate and the self-preservation of a residual part of the hydrate with an ice cover. Presumably, significant amounts of ice Ic form at this stage. The second step (210-230 K) corresponds to the dissociation of the residual part of the hydrate. The composition of the methane hydrate (cubic structure I, stable up to 620 MPa) was found to be CH(4).5.76H(2)O. Temperature dependence of the unit cell parameters for both hydrates has been also studied. Calculated from these results, the thermal expansivities for the structure H argon hydrate are alpha(a) = 76.6 K(-1) and alpha(c) = 77.4 K(-1) (in the 100-250 K temperature range) and for the cubic structure I methane hydrate are alpha(a) = 32.2 K(-1), alpha(a) = 53.0 K(-1), and alpha(a) = 73.5 K(-1) at 100, 150, and 200 K, respectively.  相似文献   

17.
The behavior of methane hydrate was investigated after it was pressurized with helium or nitrogen gas in a test system by monitoring the gas compositions. The results obtained indicate that even when the partial pressure of methane gas in such a system is lower than the equilibrium pressure at a certain temperature, the dissociation rate of methane hydrate is greatly depressed by pressurization with helium or nitrogen gas. This phenomenon is only observed when the total pressure of methane and helium (or nitrogen) gas in the system is greater than the equilibrium pressure required to stabilize methane hydrate with just methane gas. The following model has been proposed to explain the observed phenomenon: (1) Gas bubbles develop at the hydrate surface during hydrate dissociation, and there is a pressure balance between the methane gas inside the gas bubbles and the external pressurizing gas (methane and helium or nitrogen), as transmitted through the water film; as a result the methane gas in the gas bubbles stabilizes the hydrate surface covered with bubbles when the total gas pressure is greater than the equilibrium pressure of the methane hydrate at that temperature; this situation persists until the gas in the bubbles becomes sufficiently dilute in methane or until the surface becomes bubble-free. (2) In case of direct contact of methane hydrate with water, the water surrounding the hydrate is supersaturated with methane released upon hydrate dissociation; consequently, methane hydrate is stabilized when the hydrostatic pressure is above the equilibrium pressure of methane hydrate at a certain temperature, again until the dissolved gas at the surface becomes sufficiently dilute in methane. In essence, the phenomenon is due to the presence of a nonequilibrium state where there is a chemical potential gradient from the solid hydrate particles to the bulk solution that exists as long as solid hydrate remains.  相似文献   

18.
A dearth of experimental capillary pressure data limits our understanding and optimization of liquid water transport in PEMFC gas diffusion layers (GDLs). A microfluidic device and method is described for measuring the capillary pressure as a function of liquid water saturation for these thin porous materials with complex, heterogeneous wetting properties. A sample sandwich (hydrophilic membrane–GDL–hydrophobic membrane) is key for probing the entire hydrophilic and hydrophobic pore volume of the GDL during sequential liquid intrusion and gas intrusion experiments. The capillary pressure curves for an as-purchased Toray 090 and two differentially-processed Avcarb P75T GDLs were evaluated; each material displayed highly repeatable, but quantitatively different, room temperature capillary pressure curves that matched qualitative differences in their macroscopic wettability. The measurements show that hysteresis between the liquid intrusion and gas intrusion curves is significant. For example, both the Toray and fully wet-proofed Avcarb GDLs appear hydrophobic during most of the liquid intrusion curve and hydrophilic during most of the gas intrusion curve. The implications of this work for water management, and future device designs and experiments are described.  相似文献   

19.
为建立一种以水合茚三酮为显色剂准确定量检测γ-氨基丁酸(γ-aminobutyric acid,GABA)的方法,本文系统研究了显色酸度、显色剂用量、加热温度和时间等显色条件对水合茚三酮与GABA显色反应的影响,并在最优条件下对该方法进行了评价.结果表明,在pH=7.0时,GABA与1.8 g·L-1茚三酮乙醇溶液沸水...  相似文献   

20.
In order to simulate the behavior of gas hydrate formation and decomposition, a 3-Dimension experimental device was built, consisting of a high-pressure reactor with an inner diameter of 300 mm, effective height of 100 mm, and operation pressure of 16 MPa. Eight thermal resistances were mounted in the porous media at different depthes and radiuses to detect the temperature distribution during the hydrate formation/decomposition. To collect the pressure, temperature, and flux of gas production data, the Monitor and Control Generated System (MCGS) was used. Using this device, the formation and decomposition behavior of methane hydrate in the 20~40 mesh natural sand with salinity of 3.35 wt% was examined. It was found that the front of formation or decomposition of hydrate can be judged by the temperature distribution. The amount of hydrate formation can also be evaluated by the temperature change. During the hydrate decomposition process, the temperature curves indicated that the hydrate in the top and bottom of reactor dissociated earlier than in the inner. The hydrate decomposition front gradually moved from porous media surface to inner and kept a shape of column form, with different moving speed at different surface position. The proper decomposition pressure was also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号