首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capillary high-performance liquid chromatography has been coupled on-line with an ion trap storage/reflectron time-of-flight mass spectrometer to perform tandem mass spectrometry for tryptic peptides. Selection and fragmentation of the precursor ions were performed in a three-dimensional ion trap, and the resulting fragment ions were pulsed out of the trap into a reflectron time-of-flight mass spectrometer for mass analysis. The stored waveform inverse Fourier transform waveform was applied to perform ion selection and an improved tickle voltage optimization scheme was used to generate collision-induced dissociation. Tandem mass spectra of various doubly charged tryptic peptides were investigated where a conspicuous y ion series over a certain mass range defined a partial amino acid sequence. The partial sequence was used to determine the identity of the peptide or even the protein by database search using the sequence tag approach. Several peptides from tryptic digests of horse heart myoglobin and bovine cytochrome c were selected for tandem mass spectrometry (MS/MS) where it was demonstrated that the proteins could be identified based on sequence tags derived from MS/MS spectra. This approach was also utilized to identify protein spots from a two-dimensional gel separation of a human esophageal adenocarcinoma cell line.  相似文献   

2.
Atmospheric-pressure matrix-assisted laser desorption/ionization (AP-MALDI) ion trap mass spectrometry (ITMS) has been evaluated for automated protein identification. By using signal averaging and long ion-injection times, protein identification limits in the 50-fmol range are achieved for standard protein digests. Data acquisition requires 7.5 min or less per sample and the MS/MS spectra files are automatically processed using the SEQUEST database searching algorithm. AP-MALDI-ITMS was compared with the widely used methods of microLC/MS/MS (ion trap) and automated MALDI-TOF peptide mass mapping. Sample throughput is 10-fold greater using AP-MALDI compared with microcapillary liquid chromatography/tandem mass spectrometry (microLC/MS/MS). The protein sequence coverage obtained from AP-MALDI-MS/MS spectra matched by SEQUEST is lower compared with microLC/MS/MS and MALDI-TOF mass mapping. However, by using the AP-MALDI full-scan peptide mass fingerprint spectrum, sequence coverage is increased. AP-MALDI-ITMS was applied for the analysis of Coomassie blue stained gels and was found to be a useful platform for rapid protein identification.  相似文献   

3.
Tryptic peptides were labeled with sulfonic acid groups at the N-termini using an improved chemistry. The derivatization was performed in common aqueous buffers on peptides adsorbed onto a ZipTip trade mark C(18), thus allowing simultaneous desalting/concentration of the sample. When only Arg-terminating peptides were considered, the procedure from adsorption onto the ZipTip until analysis by MALDI-PSD took about 10 min and several samples could be worked on in parallel. The resulting improved post-source decay (PSD) fragmentation produced spectra containing only y-ions. PSD amino acid sequencing of underivatized and derivatized synthetic peptides was compared. From the sequence information obtained from derivatized peptides isolated by ion selection from tryptic in-gel digests, a protein was correctly identified which was difficult to analyze from an unclear peptide mass fingerprint analysis. The method was also applied to the identification and localization of phosphorylated Ser and Tyr residues in native and synthetic peptides.  相似文献   

4.
Individual peptides with lysine at the C-terminus as well as protein tryptic digests were reacted with 2-methoxy-4,5-dihydro-1H-imidazole, converting lysine residues to their 4,5-dihydro-1H-imidazol-2-yl derivatives. The mass spectra of derivatized digests exhibit a greater number of more intense features than their underivatized counterparts, thus increasing the information obtained in peptide mapping experiments. Additionally, MS/MS spectra of the derivatized peptides are greatly simplified in comparison to their native species, yielding primarily an easily interpretable series of y-ions. Finally, this novel label also enables differential quantitation studies, as a stable isotopic form containing four deuterium atoms can readily be produced.  相似文献   

5.
Guanidination of the epsilon-amino group of lysine-terminated tryptic peptides can be accomplished selectively in one step with O-methylisourea hydrogen sulfate. This reaction converts lysine residues into more basic homoarginine residues. It also protects the epsilon-amino groups against unwanted reaction with sulfonation reagents, which can then be used to selectively modify the N-termini of tryptic peptides. The combined reactions convert lysine-terminated tryptic peptides into modified peptides that are suitable for de novo sequencing by postsource decay matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The guanidination reaction is very pH dependent. Product yields and reaction kinetics were studied in aqueous solution using either NaOH or diisopropylethylamine as the base. Methods are reported for derivatizing and sequencing lysine-terminated tryptic peptides at low pmole levels. The postsource decay (PSD) MALDI tandem mass spectra of a model peptide (VGGYGYGAK), the homoarginine analog and the sulfonated homoarginine analog are compared. These spectra show the influence that each chemical modification has on the peptide fragmentation pattern. Finally, we demonstrate that definitive protein identifications can be achieved by PSD MALDI sequencing of derivatized peptides obtained from solution digests of model proteins and from in-gel digests of 2D-gel separated proteins.  相似文献   

6.
We report the application of nanoelectrospray ionization tandem mass spectrometry (nES-MS/MS) and capillary LC/microelectrospray MS/MS (cLC/&mgr;ES-MS/MS) for sequencing sulfonic acid derivatized tryptic peptides. These derivatives were specifically prepared to facilitate low-energy charge-site-initiated fragmentation of C-terminal arginine-containing peptides, and to enhance the selective detection of a single series of y-type fragment ions. Both singly and doubly protonated peptides were analyzed by MS/MS and the results were compared with those from their derivatized counterparts. Model peptides and peptides from tryptic digests of gel-isolated proteins were analyzed. Derivatized singly protonated peptides fragment in the same way by nES-MS/MS as they do by post-source decay matrix-assisted laser desorption/ionization mass spectrometry (PSD-MALDI-MS). They produce fragment ion spectra dominated by y-ions, and the simplified spectra are readily interpreted de novo. Doubly protonated peptides fragment in much the same way as their non-derivatized doubly protonated counterparts. The fragmentation of doubly protonated derivatives is especially useful for sequencing peptides that possess a proline residue near the N-terminus of the molecule. The singly protonated forms of these proline-containing derivatives often show enhanced fragmentation on the N-terminal side of the proline and considerably reduced fragmentation on the C-terminal side. In addition, sulfonic acid derivatization increases the in-source fragmentation of arginine-containing peptides. This could be useful for sequence verification and sequence tagging for use in single stage mass spectrometry. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

7.
When atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) became commercially available, the technique generated a great deal of interest because ion production was decoupled from mass analysis. Mass accuracy and resolution were therefore dependent on parameters governing the mass analyzer rather than the matrix and sample preparation. Researchers have successfully used AP-MALDI sources with both orthogonal acceleration time-of-flight (oaTOFMS) and ion trap mass spectrometers. However, one limitation of the technique has been sensitivity, especially for mixtures of peptides generated from tryptic digests. In this work, data are presented documenting an increase in sensitivity of approximately two orders of magnitude as compared with results previously reported in the literature. The improvement in sensitivity is thought to derive primarily from the novel use of a countercurrent heated gas stream directed at the sample, although the target plate position and ion sampling configuration have also been optimized to reduce chemical noise from low molecular weight ions. A tryptic digest of BSA containing 125 attomoles on the plate was successfully identified in MS-only mode, while MS/MS analysis of 250 attomoles of the same digest provided product ion spectra with sufficient information to identify the protein. More complicated mixtures of standard proteins were used to model proteomics experiments, and preliminary data suggest a minimum working dynamic range of 20-fold for the analysis of mixtures of protein digests.  相似文献   

8.
A one-step phosphoryl derivatization method has been used in a peptide sequencing procedure for electrospray ionization tandem mass spectrometry (ESI-MS/MS). The sodiated derivatized peptides exhibit very simple dissociation patterns, in which two kinds of fragment ions, [b(n) + OH + Na]+ and [a(n) + Na]+, are formed. Since the amino acid residues are lost sequentially from the C-terminus, peptide sequences can be identified easily. The fragmentation efficiency of peptides increased as a result of the phosphorylation, and also provided peaks of useful intensity at lower m/z. A peptide with lysine at the C-terminus was derivatized and analyzed by ESI-MS/MS. Similar mass spectra, from which the sequence could be read out, were obtained. This is a novel derivatization method yielding neutral derivatives that should be suitable for peptide sequencing by LC/ESI-MS/MS.  相似文献   

9.
Collision-induced dissociation of singly charged peptide ions produced by resonant excitation in a matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometer yields relatively low complexity MS/MS spectra that exhibit highly preferential fragmentation, typically occurring adjacent to aspartyl, glutamyl, and prolyl residues. Although these spectra have proven to be of considerable utility for database-driven protein identification, they have generally been considered to contain insufficient information to be useful for extensive de novo sequencing. Here, we report a procedure for de novo sequencing of peptides that uses MS/MS data generated by an in-house assembled MALDI-quadrupole-ion trap mass spectrometer (Krutchinsky, Kalkum, and Chait Anal. Chem. 2001, 73, 5066-5077). Peptide sequences of up 14 amino acid residues in length have been deduced from digests of proteins separated by SDS-PAGE. Key to the success of the current procedure is an ability to obtain MS/MS spectra with high signal-to-noise ratios and to efficiently detect relatively low abundance fragment ions that result from the less favorable fragmentation pathways. The high signal-to-noise ratio yields sufficiently accurate mass differences to allow unambiguous amino acid sequence assignments (with a few exceptions), and the efficient detection of low abundance fragment ions allows continuous reads through moderately long stretches of sequence. Finally, we show how the aforementioned preferential cleavage property of singly charged ions can be used to facilitate the de novo sequencing process.  相似文献   

10.
Derivatization of tryptic peptides using an Ettan CAF matrix-assisted laser desorption/ionization (MALDI) sequencing kit in combination with MALDI-post source decay (PSD) is a fast, accurate and convenient way to obtain de novo or confirmative peptide sequencing data. CAF (chemically assisted fragmentation) is based on solid-phase derivatization using a new class of water stable sulfonation agents, which strongly improves PSD analysis and simplifies the interpretation of acquired spectra. The derivatization is performed on solid supports, ZipTip(microC18, limiting the maximum peptide amount to 5 microg. By performing the derivatization in solution enabled the labeling of tryptic peptides derived from 100 microg of protein. To increase the number of peptides that could be sequenced, derivatized peptides were purified using multidimensional liquid chromatography (MDLC) prior to MALDI sequencing. Following the first dimension strong cation exchange (SCX) chromatography step, modified peptides were separated using reversed-phase chromatography (RPC). During the SCX clean up step, positively charged peptides are retained on the column while properly CAF-derivatized peptides (uncharged) are not. A moderately complex tryptic digest, prepared from six different proteins of equimolar amounts, was CAF-derivatized and purified by MDLC. Fractions from the second dimension nano RPC step were automatically sampled and on-line dispensed to MALDI sample plates and analyzed using MALDI mass spectrometry fragmentation techniques. All proteins in the derivatized protein mixture digest were readily identified using MALDI-PSD or MALDI tandem mass spectrometry (MS/MS). More than 40 peptides were unambiguously sequenced, representing a seven-fold increase in the number of sequenced peptides in comparison to when the CAF-derivatized protein mix digest was analyzed directly (no MDLC-separation) using MALDI-PSD. In conclusion, MDLC purification of CAF-derivatized peptides significantly increases the success rate for de novo and confirmative sequencing using various MALDI fragmentation techniques. This new approach is not only applicable to single protein digests but also to more complex digests and could, thus, be an alternative to electrospray ionization MS/MS for peptide sequencing.  相似文献   

11.
The 157 nm photofragmentation of native and derivatized oligosaccharides was studied in a linear ion trap and in a home-built matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometer, and the results were compared with collision-induced dissociation (CID) experiments. Photodissociation produces product ions corresponding to high-energy fragmentation pathways; for cation-derivatized oligosaccharides, it yields strong cross-ring fragment ions and provides better sequence coverage than low- and high-energy CID experiments. On the other hand, for native oligosaccharides, CID yielded somewhat better sequence coverage than photodissociation. The ion trap enables CID hybrid MS3 experiments on the high-energy fragment ions obtained from photodissociation.  相似文献   

12.
Atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI/QIT) mass spectrometry has been investigated for the analysis of polyethylene glycol (PEG 1500) and a hyperbranched polymer (polyglycidol) in the presence of alkali-metal salts. Mass spectra of PEG 1500 obtained at atmospheric pressure showed dimetallated matrix/analyte adducts, in addition to the expected alkali-metal/PEG ions, for all matrix/alkali-metal salt combinations. The relative intensities of the desorbed ions were dependent on the matrix, the alkali-metal salt added to aid cationisation and the ion trap interface conditions [capillary temperature, in-source collisionally-induced dissociation (CID)]. These data indicate that the adducts are rapidly stabilised by collisional cooling enabling them to be transferred into the ion trap. Experiments using identical sample preparation conditions were carried out on a vacuum MALDI time-of-flight (ToF) mass spectrometer. In all cases, vacuum MALDI-ToF spectra showed only alkali-metal/PEG ions and no matrix/analyte adducts. The tandem mass spectrometry (MS/MS) capability of the ion trap has been demonstrated for a lithiated polyglycol yielding a rich fragment-ion spectrum. Analysis of the hyperbranched polymer polyglycidol by AP-MALDI/QIT reveals the characteristic ion series for these polymers as also observed under vacuum MALDI-ToF conditions.  相似文献   

13.
Despite significant technological and methodological advancements in peptide sequencing by mass spectrometry, analyzing peptides that exhibit only poor fragmentation upon collision-induced dissociation (CID) remains a challenge. A major cause for unfavorable fragmentation is insufficient proton 'mobility' due to charge localization at strongly basic sites, in particular, the guanidine group of arginine. We have recently demonstrated that the conversion of the guanidine group of the arginine side chain by malondialdehyde (MDA) is a convenient tool to reduce the basicity of arginine residues and can have beneficial effects for peptide fragmentation. In the present work, we have focused on peptides that typically yield incomplete sequence information in CID-MS/MS experiments. Energy-resolved tandem MS experiments were carried out on angiotensins and arginine-containing phosphopeptides to study in detail the influence of the modification step on the fragmentation process. MDA modification dramatically improved the fragmentation behavior of peptides that exhibited only one or two dominant cleavages in their unmodified form. Neutral loss of phosphoric acid from phosphopeptides carrying phosphoserine and threonine residues was significantly reduced in favor of a higher abundance of fragment ions. Complementary experiments were carried out on three different instrumental platforms (triple-quadrupole, 3D ion trap, quadrupole-linear ion trap hybrid) to ascertain that the observation is a general effect.  相似文献   

14.
An isotopic modification of Sanger's method for identifying peptide N-termini has been developed to assist peptide sequencing by tandem mass spectrometry. Tryptic peptides, such as Val-His-Leu-Thr-Pro-Val-Glu-Lys, are derivatized with an equimolar mixture of 2,4-dinitrofluorobenzene and [2H3]2,4-dinitrofluorobenzene. Under optimized derivatization conditions, the alpha-amino group could be derivatized while the epsilon-amine of the lysine side chain and the imidazole of histidine remained underivatized. The alpha-dinitrophenyl modified peptides were characterized by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and liquid chromatography (LC)-ESI-MS. The [M + H]+ ions showed a doublet pattern with a delta m/z of 3 and the [M + 2H]2+ ions were recognized as doublets with a delta m/z of 1.5. MS/MS was employed where both isotopic [M + 2H]2+ ions were alternately subjected to collision-induced dissociation in the second quadrupole. Fragmentation in the ionization source generated identical product ion patterns that were observed during fragmentation in the second quadrupole. In the product ion mass spectra, the N-terminal a and b ions (no c ion observed) are doublets with a delta m/z of 3 or 1.5, while the C-terminal y and z ions (no x ion observed) are singlets appearing at identical masses. Thus, the product ions containing the N-terminus derivatized with a dinitrophenyl group are unequivocally distinguished from the product ions containing the C-terminus. The dinitrophenyl modification generally enhanced the production of a and b ions without diminishing y and z ion yields.  相似文献   

15.
In vivo nitration of tyrosine residues is a post-translational modification mediated by peroxynitrite that may be involved in a number of diseases. The aim of this study was to evaluate possibilities for site-specific detection of tyrosine nitration by mass spectrometry. Angiotensin II and bovine serum albumin (BSA) nitrated with tetranitromethane (TNM) were used as model compounds. Three strategies were investigated: (i) analysis of single peptides and protein digests by matrix-assisted laser desorption/ionization (MALDI) peptide mass mapping, (ii) peptide mass mapping by electrospray ionization (ESI) mass spectrometry and (iii) screening for nitration by selective detection of the immonium ion of nitrotyrosine by precursor ion scanning with subsequent sequencing of the modified peptides. The MALDI time-of-flight mass spectrum of nitrated angiotensin II showed an unexpected prompt fragmentation involving the nitro group, in contrast to ESI-MS, where no fragmentation of nitrated angiotensin II was observed. The ESI mass spectra showed that mono- and dinitrated angiotensin II were obtained after treatment with TNM. ESI-MS/MS revealed that the mononitrated angiotensin II was nitrated on the side-chain of tyrosine. The dinitrated angiotensin II contained two nitro groups on the tyrosine residue. Nitration of BSA was confirmed by Western blotting with an antibody against nitrotyrosine and the sites for nitration were investigated by peptide mass mapping after in-gel digestion. Direct mass mapping by ESI revealed that two peptides were nitrated. Precursor ion scanning for the immonium ion for nitrotyrosine revealed two additional partially nitrated peptides. Based on the studies with the two model compounds, we suggest that the investigation of in vivo nitration of tyrosine and identification of nitrated peptides might be performed by precursor ion scanning for the specific immonium ion at m/z 181.06 combined with ESI-MS/MS for identification of the specific nitration sites.  相似文献   

16.
A new method has been developed to study the dissociation patterns of singly protonated peptides by using a quadrupole ion trap mass spectrometer. The new approach involves using boundary-activated dissociation to characterize the ease of dissociation of peptide ions. Insight can be gained into the effect of specific peptide sequences on the dissociation energetics of protonated peptides. Increased knowledge of the effects of specific sequences on the dissociation patterns of peptide ions should improve the ability to interpret complex spectra from tandem mass spectrometry (MS/MS) experiments. This method has confirmed the previously observed increase in the energy needed for the dissociation of peptide ions containing basic residues. In addition, this technique has revealed the effect of the location of proline residues on the dissociation energetics of peptides with this amino acid.  相似文献   

17.
Charged derivatives of peptides are useful in obtaining simpler collision-activated dissociation (CAD) mass spectra. An N-terminal charge-derivatizing reagent capable of reacting with picomole levels of peptide has been recently reported (Huang et al. Anal. Chem. 1997, 69, 137-144) in the contexts of analyses by fast atom bombardment (FAB) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Electrospray ionization (ESI) mass spectrometric investigation of these tris(trimethoxyphenylphosphonium) acetyl derivatives are described in this article, including studies by in-source fragmentation (ISF) and tandem mass spectrometry (MS/MS). Results from ISF are compared with those from MS/MS. Similarities and differences between ESI-ISF, MALDI-post-source decay (PSD), and FAB-CAD data are presented. Differences in fragmentation of these charged derivatives in the triple quadrupole and ion trap mass spectrometers also are discussed. Application of this derivatizing procedure to tryptic digests and subsequent analysis by liquid chromatography-mass spectrometry is also shown.  相似文献   

18.
Using the accurate masses obtained from a time-of-flight instrument and the tandem mass spectrometric (MS/MS) data from an ion trap instrument, electron ionization mass spectra of a series of 1,4-dihydro-4-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)pyridines are reported and rationalized. Two sets of fragmentation pathways are proposed. One involves the formation of fragment ions containing the 1,4-dihydropyridine structure, and the other of ions containing a pyridine ring.  相似文献   

19.
A series of synthetic peptides (3-15 residues), C-terminally derivatized with 4-aminonaphthalenesulfonic acid (ansa), have been analyzed on a hybrid magnetic sector-orthogonal acceleration time-of-flight tandem mass spectrometer, fitted with a nano-electrospray (nano-ES) interface. Deprotonated molecules generated by negative-ion ES were subjected to collision-induced dissociation (CID) using either methane or xenon as the collision gas, at a collision energy of 400 eV (laboratory frame of reference). As a consequence of charge localization on the sulfonate group, only C-terminal fragment ions were formed, presumably by charge-remote fragmentation mechanisms. Interpretable CID spectra were obtained from fmol amounts of the small peptides (up to 6 residues), whereas low pmol amounts were required for the larger peptides. CID spectra were also recorded of derivatized, previously noncharacterised peptides obtained by proteolysis of cytosolic hamster liver aldehyde dehydrogenase. Interpretation of these CID spectra was based on rules established for the fragmentation of the synthetic peptides. This study shows that derivatization with ansa may be useful in the de novo sequencing of peptides.  相似文献   

20.
A simple and effective method was developed for peptide sequencing and protein identification through the determination of its N-terminal residue. The method of N-terminal carbamidomethylation with iodoacetamide could specifically and remarkably enhance the intensity of a1 ions in the tandem mass spectra of the peptide derivatives without significantly altering their fragmentation pattern, thus allowing determination of their N-terminal residues. The effectiveness and specificity of the method was demonstrated by confirming and extending sequence interpretation of several model peptides and proteins. The developed method was then applied in the LC-MS/MS analysis of the tryptic digests of myoglobin and a whole protein extract from rat heart tissues. The results from database searches were well validated with the enhancement of a1 ions in tandem mass spectra and the specificity of protein identification was obtained when the information of N-terminal residues was included in the database search.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号