首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic properties and crystal structure of the Pr0.5Sr0.5Co0.5Fe0.5O3 compound are studied by neutron and x-ray diffractions using synchrotron radiation. These measurements show that this compound is a dielectric spin glass with a magnetic moment freezing temperature of about 70 K. As temperature decreases in the range 30–95 K, a structure phase transition of the first order occurs with an increase in the symmetry from orthorhombic (space group Imma) to tetragonal (space group I4/mcm). It is assumed that the transition is caused by a change in the 4f electron configuration of the Pr3+ ions.  相似文献   

2.
The magnetic phase diagram of the CeAl2 magnetic Kondo lattice was studied using microwave magnetoabsorption spectroscopy at frequencies of 37–118 GHz, temperatures of 1.8–4.6 K, and magnetic fields of up to 70 kOe. The observed anomalies in magnetoabsorption, when combined with the change in the carrier scattering pattern in (established in galvanomagnetic measurements) CeAl2 near H*≈35 kOe at liquid-helium temperatures, suggest that this compound undergoes a sequence of magnetic transitions accompanied by strong spin fluctuations. The nature of the magnetic phases and the mechanisms driving the phase transformations in CeAl2 are discussed.  相似文献   

3.
It has been found that the magnetic susceptibility of (Sm0.5Gd0.5)0.55Sr0.45MnO3 ceramic samples in zero external magnetic field exhibits a sharp peak near the temperature of 48.5 K with a small temperature hysteresis that does not depend on the frequency of measurements and is characteristic of the phase transition to an antiferromagnetic state with a long-range charge orbital ordering, which is accompanied by an increase in the magnetic susceptibility with a decrease in the temperature. The magnetization isotherms in static and pulsed magnetic fields at temperatures below 60 K demonstrate the occurrence of an irreversible metamagnetic transition to a homogeneous ferromagnetic state with a critical transition field independent of the measurement temperature, which, apparently, is associated with the destruction of the insulating state with a long-range charge ordering. In the temperature range 60 K ?? T ?? 150 K, the ceramic samples undergo a magnetic-field-induced reversible phase transition to the ferromagnetic state, which is similar to the metamagnetic transition in the low-temperature phase and is caused by the destruction of local charge/orbital correlations. With an increase in the temperature, the critical transition fields increase almost linearly and the field hysteresis disappears. Near the critical fields of magnetic phase transitions, small ultra-narrow magnetization steps have been revealed in pulsed fields with a high rate of change in the magnetic field of ??400 kOe/??s.  相似文献   

4.
In this paper, we present a study of magnetocaloric effect in the colossal magnetoresistance material (La0.5Gd0.2)Sr0.3MnO3. From the measurements of isothermal magnetization at different temperatures, we have discovered a large magnetic entropy change with a broad peak around Curie temperature (270.5 K) in (La0.5Gd0.2)Sr0.3MnO3 polycrystalline sample. Moreover, the maximum of magnetic entropy change exhibits a nearly linear dependence with applied high magnetic field. These results suggest that this material is a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

5.
The structural and magnetic properties of the alloy system REIn0.5Ag0.5 [RE = Gd, Tb, Dy, Ho, Er, Tm and Yb] are reported. All these alloys (except that of Yb) crystallize in a cubic CsCl type structure at room temperature. Low temperature X-ray diffraction data does not reveal any structural phase transformation down to 8 K. On the basis of magnetic susceptibility data at a different temperature (3–300 K) and applied magnetic field (2 × 105 to 8 × 106 A m-1, it has been concluded that GdIn0.5Ag0.5 is ferromagnetic (Tc = 118 K), TbIn0.5Ag0.5 and DyIn0.5Ag0.5 are meta magnetic (TN = 66 and 30 K, respectively) and alloys involving Ho, Er, Tm and Yb are ferrimagnetic with Néel temperatures (TN) equal to 24, 22, 21 and 20 K, respectively. The evaluated effective magneton number (p) is found to be slightly larger compared to theoretical values for tripositive ions of Gd, Tb and Dy and a bit smaller for Ho, Er, Tm and Yb. The results have been qualitatively explained using appropriate theories.  相似文献   

6.
High-quality fine-grained ceramic samples of classical multiferroics PbFe1/2Nb1/2O3 (PFN) were synthesized. Their dielectric, magnetoelectric, and magnetic characteristics, including the Mössbauer effect, were measured over wide ranges of temperatures (10–1000 K) and field frequencies (from 25 Hz to 1 MHz). The temperature dependence of the dielectric loss exhibits a maximum between 150 and 170 K, likely due to magnetic ordering. The dependence of ? on the magnetic field displays an anomalous increase near the Curie temperature (370 K) that rises to 40% upon heating.  相似文献   

7.
We performed multifrequency electron spin resonance (ESR) on the antiferromagnetic (TN = 160 K) and charge-ordered (T co = 250 K) insulating manganite Nd0.5Ca0.5MnO3. Temperature (4–300 K) and frequency (9.4–285 GHz) dependence of the linewidth, intensity and position of the ESR line were studied. In the paramagnetic state we observe a single Lorentzian absorption line. For a given frequency, the ESR line position is temperature independent (close tog = 1.99). A strong linewidth broadening is observed below Tco. This indicates that there is no magnetic order in the temperature rangeT cos>T >T N but strong antiferromagnetic fluctuations are present. Below TN, due to high-frequency and high-field ESR (up to 12 T) measurements, we were able to observe unexpected lines within the antiferromagnetic gap revealing the presence of a phase separation.  相似文献   

8.
Bi0.5Na0.5TiO3 (BNT)-doped BaFe0.5Nb0.5O3 (BFN) ceramics were synthesized by a two-step solid-state reaction. Temperature dependence of dielectric properties measured at different frequencies was investigated over broad temperature and frequency ranges. Impedance spectroscopy and universal dielectric response were employed to study the relaxation behavior and conductivity mechanism of the ceramics in a frequency range from 40 Hz to 100 MHz and a temperature range from 300 K to 800 K. The complex plane impedance data revealed the bulk and grain boundary contributions toward conductivity processes in the form of semicircular arcs. The high-temperature conductivity of ceramics is attributable to thermally activated second ionized oxygen vacancy.  相似文献   

9.
The structure, magnetic and electrical transport properties of La0.5Sr0.5MnO3 annealed in different atmosphere have been investigated. No evident change of structural symmetry and the Curie temperature is observed for the samples. The resistivity at zero magnetic field of the samples annealed in air and nitrogen exhibits a metal–insulator transition, while no metal–insulator transition is observed for the sample annealed in oxygen, and for which the resistivity decreases monotonously with increasing temperature. Surprisingly, when an external magnetic field is applied, a metal–insulator transition appears for the sample annealed in oxygen. It is suggested that the annealing atmosphere affects the competition between FM and AFM phases due to the change of Mn4+/Mn3+ ratio and the oxygen/cation vacancies, and has a great influence on the electrical transport properties of La0.5Sr0.5MnO3.  相似文献   

10.
This paper reports on the first study of the magnetic properties of polycrystalline films of CoCr2O4 and CoFe0.5Cr1.5O4 multiferroics. The study covered, in particular, magnetization reversal curves and temperature dependences of the magnetization at temperatures ranging from 4.2 to 300 K in magnetic fields of up to 10 kOe. It has been shown that the Curie temperature and the pattern of the temperature dependence of the magnetization depend on the cation composition of the multiferroic. The temperature dependence of the magnetization of polycrystalline CoCr2O4 films has revealed an anomaly in the temperature range 10–70 K.  相似文献   

11.
Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal in the spectral range of 30–1700 cm–1 have been measured at temperatures from 6 to 300 K. The experimental spectra have been analyzed based on the semiempirical calculation of the lattice dynamics and the analysis of correlation diagrams of borate complexes. No changes associated with structural phase transitions have been detected in the temperature range of measurements; the effect of magnetic ordering on the infrared absorption spectra has not been observed.  相似文献   

12.
The hydrothermal synthesis and magnetic entropy change for the perovskite manganite La0.5Ca0.3Sr0.2MnO3 have been studied. The La0.5Ca0.3Sr0.2MnO3 can be produced as phase-pure, crystalline powders in one step from solutions of metal salts in aqueous potassium hydroxide solution at a temperature of 513 K in 72 h. Scanning electron microscopy shows that the materials are made up of cuboid-shaped particles in typical dimension of 4.0×2.5×1.6 μm. Heat treatment can improve the magnetocaloric effect for the hydrothermal sample. The maximum magnetic entropy change ΔSM for the as-prepared sample is 0.88 J kg−1 K−1 at 315 K for a magnetic field change of 2.0 T. It increases to 1.52 J kg−1 K−1, near its Curie temperature (317 K) by annealing the sample at 1473 K for 6 h. The hydrothermal synthesis method is a feasible route to prepare high-quality perovskite material for magnetic refrigeration application.  相似文献   

13.
A single crystal of the magnetic semiconductor Tm0.5Eu0.5Se was studied by means of neutron diffraction in the temperature range from 1.8 to 293 K. Long-range magnetic order is detected at temperatures below Tc = (18.5±1) K. The measured ferromagnetic moment component of (2.12±0.05) μB per rare-earth ion at saturation in zero external magnetic field indicates approximately antiparallel alignment of Tm moment and Eu spin (mutual angle 134°). The experimentally determined neutron magnetic form factor confirms the divalent state of both Tm and Eu in Tm0.5Eu0.5Se.  相似文献   

14.
The crystal structure and magnetocaloric effect (MCE) of water-quenched and annealed (Mn0.5Co0.5)65Ge35 alloys were studied in this paper. A CoMnGe-single phase was formed in the water-quenched alloy, and mixture phases of CoMnGe and Mn+2O in the annealed alloy. The annealed alloy has a smaller crystal parameter than the water-quenched alloy. The Curie temperature is 275 and 298 K for the water-quenched and annealed alloys, respectively, which means that the magnetic-transition temperature in this material can be controlled by anneal. In addition, the same magnetic entropy change was found in these two alloys, even though their Curie temperatures have a significant difference.  相似文献   

15.
The effect of doping of rare earth Pr3+ ion as a replacement of Sm3+ in Sm0.5Sr0.5MnO3 is investigated. Temperature dependent dc and ac magnetic susceptibility, resistivity, magnetoresistance measurements on chemically synthesized (Sm0.5−xPrx)Sr0.5MnO3 show various unusual features with doping level x=0.15. The frequency independent ferromagnetic to paramagnetic transition at higher temperature (∼191 K) followed by a frequency dependent reentrant magnetic transition at lower temperature (∼31 K) has been observed. The nature of this frequency dependent reentrant magnetic transition is described by a critical slowing down model of spin glasses. From non-linear ac susceptibility measurements it has been confirmed that the finite size ferromagnetic clusters are formed as a consequence of intrinsic phase separation, and undergo spin glass-like freezing below a certain temperature. There is an unusual observation of a 2nd harmonic peak in the non-linear ac susceptibility around this reentrant magnetic transition at low temperature (∼31 K). Arrott plots at 10 and 30 K confirm the existence of glassy ferromagnetism below this low temperature reentrant transition. Electronic- and magneto-transport measurements show a strong magnetic field—temperature history dependence and strong irreversibility with respect to the sweeping of magnetic field. These results are attributed to the effect of phase separation and kinetic arrest of the electronic phase in this phase separated manganite at low temperatures.  相似文献   

16.
Abstract

Dielectric permittivity studies of Na0.5Bi0.5TiO3 single crystals in a broad range of frequency up to 10 MHz and temperature 300—823 K are reported. In this temperature range dielectric dispersion below 1 MHz has been found. The obtained data were fitted to the Cole-Cole relation. The mean relaxation time τ is strongly temperature dependent (0.04 ? 2.6 × 10?5 s). A remarkable hysteresis effect in the values of τ on cooling and heating took place. The Δε(T) dependence (the maximal value of Δε ~ 400) is similar to the global ε′(T) response at low frequency. An isothermal structural transformation in Na0.5Bi0.5TiO3 was observed by X-ray measurements. The order of the time in which the transformation takes place (~300 minutes) corresponds to the time in which the strongest time evolution of electric permittivity and time changes of dielectric dispersion were detected.  相似文献   

17.
The energy structure and temperature evolution of the magnetic excitation spectra of Pr0.5Sr0.5CoO3 are studied by inelastic neutron scattering. The measurements are performed on a polycrystalline sample of Pr0.5Sr0.5CoO3 and its non-magnetic analogue La0.5Sr0.5CoO3 on the high intensity time-of-flight spectrometer IN4 (ILL, Grenoble) in the temperature range 10 K < T < 300 K. The crystal electric field parameters in Pr0.5Sr0.5CoO3 are calculated and the splitting scheme of the 4f ground multiplet of Pr3+ ions is determined based on the experimental data.  相似文献   

18.
The complex permittivity ?* of ceramics of bismuth-lanthanum manganite Bi0.5La0.5MnO3 has been measured in ranges of temperatures T = 10–200 K and frequencies f = 102–106 Hz. Clearly pronounced regions of the non-Debye dielectric relaxation have been revealed at low temperatures (T < 90 K). To describe them, the possible mechanisms have been proposed and discussed. The temperature dependences of magnetization, the anomalous behavior of which can be associated with the phase transition from the paramagnetic phase into the ferromagnetic phase occurring at T ~ 40–80 K, have been measured in the temperature range T = 10–120 K.  相似文献   

19.
In the present work, mixed magnesium-manganese ferrites of composition Mg0.9Mn0.1Al0.3CozFe1.7−zO4 where z=0.3, 0.5 and 0.7 have been synthesized by the citrate precursor technique. X-ray diffraction patterns of the samples confirmed the formation of single-phase spinel structure. The ferrites have been investigated for their electric and magnetic properties such as dc resistivity, Curie temperature, saturation magnetization, initial permeability and relative loss factor (RLF). Fairly constant value of initial permeability over a wide frequency range (0.1-20 MHz) and low values of the relative loss factor of the order of 10−4-10−5, in the frequency range 0.1-30 MHz, are the cardinal achievements of the present investigation. In addition to this, initial permeability was found to increase with an increase in temperature while RLF was observed to be low at these temperatures. The dc resistivity and Curie temperature were found to increase with an increase in cobalt content. The mechanisms contributing to these results are discussed in detail in this paper.  相似文献   

20.
The transition metal phosphorus trichalcogenides MnPS3 and the FePS3 are CdCl2 type layered compounds, where the transition metal ions form a hexagonal lattice. While these compounds order anti-ferromagnetically at low temperature, the magnetic structures are different. We have reported that these mixtures Mn0.5Fe0.5PS3 is a spin glass with a glass transition temperature T g=33.7 K. Then, in this work, we report that the results of the temperature variation of the 57Fe Mössbauer spectra of FePS3 and Mn0.5Fe0.5PS3, in detail. In the anti-ferromagnetic state of FePS3, the hyperfine magnetic field H int increases with decreasing temperature and the Isomer shift I. S. increases slightly with decreasing temperature. However in Mn0.5Fe0.5PS3, the two broadened peaks are observed and the two peaks became a single peak with decreasing temperature at about 50.0 K, which is higher than T g=33.7 K. In the spin glass Mn0.5Fe0.5PS3, the Mössbauer spectra suggest that the magnetic interactions exist far above T g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号