首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel(II) and cobalt(II) complexes with the commercial herbicides 2,4-dichlorophenoxyacetic acid (2,4D; C8H6O3Cl2) and 2-(2,4-dichlorophenoxy)-propionic acid (2,4DP; C9H8O3Cl2) were prepared and characterized. On the basis of the results of elemental analysis and Ni and Co determination, the following molecular formulae were proposed for the obtained compounds: Ni(C8H5O3Cl2)2·6H2O, Co(C8H5O3Cl2)2·6H2O, Ni(C9H7O3Cl2)2·2H2O and Co(C9H7O3Cl2)2·2H2O. X-ray powder analysis was carried out. The IR, electronic (VIS) spectra and conductivity data were discussed. Water solubility of the synthesized complexes at room temperature was examined. Thermal decomposition of the compounds was studied. Dehydration processes occur during heating in air. The anhydrous compounds decompose via different intermediate products to oxides. TG/MS studies indicate formation of gaseous mass fragments of decomposition including H2O+, OH+, CO2 +, HCl+, Cl2 +, CH3Cl+, CH2O+, C6H6 + and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
2,4'-Bipyridyl (2,4'-bipy or L) complexes of Mn(II) with the formulae MnL2X2·2H2O (X=Cl, Br, NCS, NO3), MnLSO4·5H2O and MnL4(ClO4)2·2H2O were synthesized and characterized via the IR spectra and magnetic, and conductivity measurements. The nature of the Mn(II)-ligand coordination is discussed. The thermal decompositions of these compounds were studied in air atmosphere. The mode of decomposition depends on the anion present, but the final product in all cases is Mn3O4. Some of the intermediates (MnL2Cl2, MnLCl2, MnL2Br2, MnL2(NCS)2 and MnLSO4) formed during the pyrolysis are isomeric with 2,2'-bipy and 4,4'-bipy complexes.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
The Li, Rb and Cs complexes with the herbicide (2,4‐dichlorophenoxy)acetic acid (2,4‐D), namely poly[[aqua[μ3‐(2,4‐dichlorophenoxy)acetato‐κ3O1:O1:O1′]lithium(I)] dihydrate], {[Li(C8H5Cl2O3)(H2O)]·2H2O}n, (I), poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ4O1:O1′:O1′,Cl2]dirubidium(I)], [Rb2(C8H5Cl2O3)2(H2O)]n, (II), and poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ5O1:O1′:O1′,O2,Cl2]dicaesium(I)], [Cs2(C8H5Cl2O3)2(H2O)]n, (III), respectively, have been determined and their two‐dimensional polymeric structures are described. In (I), the slightly distorted tetrahedral LiO4 coordination involves three carboxylate O‐atom donors, of which two are bridging, and a monodentate aqua ligand, together with two water molecules of solvation. Conjoined six‐membered ring systems generate a one‐dimensional coordination polymeric chain which extends along b and interspecies water O—H...O hydrogen‐bonding interactions give the overall two‐dimensional layers which lie parallel to (001). In hemihydrate complex (II), the irregular octahedral RbO5Cl coordination about Rb+ comprises a single bridging water molecule which lies on a twofold rotation axis, a bidentate Ocarboxy,Cl‐chelate interaction and three bridging carboxylate O‐atom bonding interactions from the 2,4‐D ligand. A two‐dimensional coordination polymeric layer structure lying parallel to (100) is formed through a number of conjoined cyclic bridges, including a centrosymmetric four‐membered Rb2O2 ring system with an Rb...Rb separation of 4.3312 (5) Å. The coordinated water molecule forms intralayer aqua–carboxylate O—H...O hydrogen bonds. Complex (III) comprises two crystallographically independent (Z′ = 2) irregular CsO6Cl coordination centres, each comprising two O‐atom donors (carboxylate and phenoxy) and a ring‐substituted Cl‐atom donor from the 2,4‐D ligand species in a tridentate chelate mode, two O‐atom donors from bridging carboxylate groups and one from a bridging water molecule. However, the two 2,4‐D ligands are conformationally very dissimilar, with one phenoxyacetate side chain being synclinal and the other being antiperiplanar. The minimum Cs...Cs separation is 4.4463 (5) Å. Structure extension gives coordination polymeric layers which lie parallel to (001) and are stabilized by intralayer water–carboxylate O—H...O hydrogen bonds.  相似文献   

4.
The mixed 2,4'-bipyridine-oxalato complexes of the formulae M(2,4'-bipy)2 C2 O4 2H2 O (M (II)=Mn, Co, Ni, Cu; 2,4'-bipyridine=2,4'-bipy or L ; C2 O2– 4 =ox) have been prepared and characterized. IR data show that the 2,4'-bipy coordinated with these metals(II) via the least hindered (4')N atom; that oxalate group acts as bidentate chelating ligand. Room temperature magnetic moments are normal for the orbital singlet states. The thermal decomposition of these complexes was investigated by TG, DTA and DTG in air. The endothermic or exothermic character of the decomposition of ML2 (ox)2H2 O was discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Ti(IV), Zr(IV) and Pb(II) complexes with 5-nitro-8-hydroxyquinoline (5-NQ) were obtained by precipitation in acetone/ammonium solution medium. The compounds TiO(C9H5N2O3)2·;0.5H2O, ZrO(C9H5N2O3)2·2H2O and Pb(C9H5N2O3)2 were characterized by Elemental Analysis, X-ray Diffratometry and Infrared Absorption Spectrometry and their thermal behavior followed by TG/DTA. This present study intends to show the variations in the thermal behavior of the compounds and in the composition and/or structure of final oxide residues, in different atmospheres and heating rates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Three hydroxamic acid ligands (HL1 = acetohydroxamic acid; HL2 = benzohydroxamic acid; HL3 = N-phenylbenzohydroxamic acid), have been used to synthesize series of mono- or dialkyltin(IV) complexes, which include (i) the carboxyl acid hybrid five-coordinated dialkyltin complexes (C4H9)2SnL1L4 (1), [(CH3)2SnL2L5]·0.5C6H6 (2), (HL4 = acetic acid; HL5 = benzoic acid); (ii) the six-coordinated mono-n-butyltin complexes (C4H9)SnL1·Cl2·H2O (3), (C4H9)SnL2·Cl2·H2O (4), [(C4H9)SnL3·Cl2·H2O]·H2O (5), [(C4H9Sn)2(L3)2·Cl2·(OCH3)2] (6); and (iii) the alkali metal-mingled seven-coordinated mono-n-butyltin complexes [(C4H9Sn)3L2Na]+·Cl·(CH3CH2)2O (7), [(C4H9Sn)3L2K]+·Cl·CH2Cl2 (8). All complexes were characterized by elemental analyses, IR, 1H, 13C, 119Sn NMR and X-ray single crystal diffraction. In these complexes, hydroxamic acids present bidentate coordination modes with the carbonyl O atom and the hydroxyl O atom binding to tin center. In complexes 1-6, each tin atom is coordinated by one hydroxamic acid ligand. However, in complexes 7 and 8, tin atom is surrounded by three hydroxamic acid ligands, and all hydroxyl O atoms of the ligands also bind to the alkali metal center (Na or K). This kind of organotin(IV) framework containing one alkali metal is found for the first time. Furthermore, the supramolecular structures of 1, 3, 4 and 6 have been found to consist of 1D linear molecular chains formed by intermolecular N-H···X or C-H···X (X = O, N or Cl) hydrogen bonds. For complex 2, an interesting macrocyclic tetramer has been built by the intermolecular N-H···O hydrogen bonds. Fascinatingly, two unique symmetric dimeric structures are recognized in complexes 7 and 8, which is individually bridged by intermolecular N-H···Cl and N-H···O hydrogen bonds. In addition, for 8, the dimeric cycles have been further connected into a 1D supramolecular chain.  相似文献   

7.
Under the hydrothermal conditions, Nd(NO3)3·6H2O reacted with pyridine‐2,4‐dicarboxylic acid (2,4‐pydcH2) to give a 2D co‐ordination polymer with the empirical formula of C16H18N2Nd2O18×H2O ( 1 ). Pr(NO3)3·6H2O also reacted with 2,4‐pydcH2 to give another 2D coordination polymer (C8H9NO9Pr)2·H2O ( 2 ). The structure of both polymers have been determined by X‐ray diffraction. X‐ray structural analyses show that both polymers contain bridging oxalate (C2O42?) ligands, which might have been formed by the coupling of two CO2?× radicals, released from pydc2? ligands.  相似文献   

8.
For the complexes (CH8N4)2[CuCl6], (C2H9N5)2[CuCl6] · 2H2O, and (CH8N4O)4[CuCl6]Cl4, where (CH8N4)2+, (C2H9N5)2+, and (CH8N4O)2+ are the aminoguanidinium, biguanidium, and carbohydrazidium cations, respectively, IR and Raman spectra were taken and analyzed in the region of Cu—Cl vibrations. Polarization measurements of the Raman spectra of (CH8N4O)4[CuCl6]Cl4 single crystals were performed with the purpose of assigning the vibrations to symmetry types. Vibration spectra were calculated for the hexachlorocuprate ion in the given series of compounds, and the spectra of the examined complexes were compared with spectra of the previously known compounds incorporating the hexachlorocuprate(II) ion.  相似文献   

9.
The structures of the 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid with 8‐hydroxyquinoline, 8‐aminoquinoline and quinoline‐2‐carboxylic acid (quinaldic acid), namely anhydrous 8‐hydroxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H8NO+·C8H3Cl2O4, (I), 8‐aminoquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H9N2+·C8H3Cl2O4, (II), and the adduct hydrate 2‐carboxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate quinolinium‐2‐carboxylate monohydrate, C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2O, (III), have been determined at 130 K. Compounds (I) and (II) are isomorphous and all three compounds have one‐dimensional hydrogen‐bonded chain structures, formed in (I) through O—H...Ocarboxyl extensions and in (II) through N+—H...Ocarboxyl extensions of cation–anion pairs. In (III), a hydrogen‐bonded cyclic R22(10) pseudo‐dimer unit comprising a protonated quinaldic acid cation and a zwitterionic quinaldic acid adduct molecule is found and is propagated through carboxylic acid O—H...Ocarboxyl and water O—H...Ocarboxyl interactions. In both (I) and (II), there are also cation–anion aromatic ring π–π associations. This work further illustrates the utility of both hydrogen phthalate anions and interactive‐group‐substituted quinoline cations in the formation of low‐dimensional hydrogen‐bonded structures.  相似文献   

10.
The structure of the title compound, catena‐poly[[cadmium(II)‐di‐μ‐chlorido‐μ‐(1,4‐diazoniabicyclo[2.2.2]octane‐1‐carboxylato)] [[aquachloridocadmium(II)]‐di‐μ‐chlorido] dihydrate], {[Cd(C8H15N2O2)Cl2][CdCl3(H2O)]·2H2O}n, contains two kinds of independent one‐dimensional chain, viz. {[Cd(C8H15N2O2)Cl2]+}n and {[CdCl3(H2O)]}n, and uncoordinated water molecules. Each CdII cation in the {[Cd(C8H15N2O2)Cl2]+}n chain is octahedrally coordinated by two pairs of bridging chloride ligands and two O atoms from different bridging carboxylate groups. CdII cations in the {[CdCl3(H2O)]}n chain are also octahedrally surrounded by four bridging chloride ligands, one terminal chloride ligand and one coordinated water molecule. Hydrogen bonds between solvent water molecules and these two independent chains generate a three‐dimensional framework containing two‐dimensional zigzag layers.<!?tpb=18pt>  相似文献   

11.
A fixed hydrogen‐bonding motif with a high probability of occurring when appropriate functional groups are involved is described as a `supramolecular hydrogen‐bonding synthon'. The identification of these synthons may enable the prediction of accurate crystal structures. The rare chiral hydrogen‐bonding motif R53(10) was observed previously in a cocrystal of 2,4,6‐trichlorophenol, 2,4‐dichlorophenol and dicyclohexylamine. In the title solvated salt, 2C4H12N+·C6H3Cl2O·(C6H3Cl2O·C6H4Cl2O)·2C4H8O, five components, namely two tert‐butylammonium cations, one 2,4‐dichlorophenol molecule, one 2,4‐dichlorophenolate anion and one 2,6‐dichlorophenolate anion, are bound by N—H…O and O—H…O hydrogen bonds to form a hydrogen‐bonded ring, with the graph‐set motif R53(10), which is further associated with two pendant tetrahydrofuran molecules by N—H…O hydrogen bonds. The hydrogen‐bonded ring has internal symmetry, with a twofold axis running through the centre of the 2,6‐dichlorophenolate anion, and is isostructural with a previous and related structure formed from 2,4‐dichlorophenol, dicyclohexylamine and 2,4,6‐trichlorophenol. In the title crystal, helical columns are built by the alignment and twisting of the chiral hydrogen‐bonded rings, along and across the c axis, and successive pairs of rings are associated with each other through C—H…π interactions. Neighbouring helical columns are inversely related and, therefore, no chirality is sustained, in contrast to the previous case.  相似文献   

12.
Reaction of Cd(II) ion with hypoxanthine (H2 Y) and with 6-mercaptopurine (H2 MP) in dioxane-water (50%) leads to the formation of CdY·2H2O and Cd(HMP)2·2H2O, respectively. In methanolic medium Cd(II) and H2 MP give Cd(MP)·H2O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25±0.1 °C and 1M ionic strength with NaClO4 in dioxane-water medium is log =10.25±0.05.
Komplexbildung von Hypoxanthin und 6-Mercaptopurin mit Cd(II)
Zusammenfassung Die Umsetzung von Cd(II)-Ionen mit Hypoxanthin (H2 Y) und 6-Mercaptopurin (H2 MP) in Dioxan-Wasser (50%) ergibt die Verbindungen CdY·2H2O und Cd(HMP)2·2H2O. In Methanol entsteht aus Cd(II) und H2 MP CdMP·H2O. Die Verbindungen wurden durch chemische Analysen, IR-Spektren und thermogravimetrische Analysen charakterisiert. Die Stabilitätskonstante der Verbindung CdY bei 25°C und bei einer Ionenstärke = 1 (NaClO4) in Dioxan-Wasser wurde zu lg =10,25±0,05 bestimmt.
  相似文献   

13.
New mixed ligand complexes of the following stoichiometric formulae: M(2-bpy)2(RCOO)2·nH2O, M(4-bpy)(RCOO)2·H2O and M(2,4’-bpy)2(RCOO)2·H2O (where M(II)=Zn, Cd; 2-bpy=2,2’-bipyridine, 4-bpy=4,4′-bipyridine, 2,4′-bpy=2,4′-bipyridine; R=C2H5; n=2 or 4) were prepared in pure solid-state. These complexes were characterized by chemical and elemental analysis, IR and conductivity studies. Thermal behaviour of compounds was studied by means of DTA, DTG, TG techniques under static conditions in air. The final products of pyrolysis of Cd(II) and Zn(II) compounds were metal oxides MO. A coupled TG/MS system was used to analyse of principal volatile products of thermal decomposition or fragmentation of Zn(4-bpy)(RCOO)2·H2O under dynamic air and argon atmosphere. The principal species correspond to: C+, CH+, CH3 +, C2H2 +, HCN+, C2H5 + or CHO+, CH2O+ or NO+, CO2 +, 13C16O2 + and 12C16O18O+ and others; additionally CO+ in argon atmosphere.  相似文献   

14.
Summary The following coordination compounds derived from 2-guanidinobenzimidazole (2GB) (1); [Ni(2GB)2]Cl2· H2O, (2); [Ni(2GB)2]Br2·3H2O, (3); [Ni(2GB)2-(NO3)2, (4); [Ni(2GB)2](OAc)2, (5); [Cu(2GB)Cl2], (6); [Cu(2GB)Br2], (7); [Cu(2GB)2]Br2·2H2O, (8); [Cu(2GB)2](NO3)2·H2O, (9); [Cu(2GB)2](OAc)2· H2O, (10); [Zn(2GB)Cl2]·H2O, (11); [Zn(2GB)Br2]·H2O, (12); [Co(2GB)Cl2(H2O)2]·5H2O, (13); [Co-(2GB)2Cl2]·3H2O, (14); [Co(2GB)2(H2O)2](NO3)2· 4H2O, (15); and [Co(2GB)2(H2O)2](OAc)2, (16) have been synthesized and characterized by i.r. and electronic spectroscopy. In addition (6)–(10) were analysed by e.p.r. The X-ray diffraction structure of compound (4) was obtained. It crystallizes in the monoclinic system, C2/c (a = 22.511(7), b = 6.735(6) and c= 15.345(5)Å, =115.31(3)°, Z = 4, final R = 0.0360 and R w = 0.0388 for 1167 observed independent reflections). The nickel(II) atom coordinates two ligands in a square-planar geometry through the imidazolic N(3) and the guanidino N(12).The probable ligand isomers involved in the coordination were determined by theoretical calculations, and the possible structures of the coordination compounds were investigated in order to verify that the experimentally proposed structures were stable. Two different types of coordination compounds were found. One, where the ligand is chelating through the imidazolic N(3) and the guanidino N(12), which is the case for most of the complexes [(2)–(13)]. With only one ligand in the coordination sphere, the structure was either tetrahedral (copper and zinc chloride and bromide complexes) or octahedral (cobalt). With two chelating 2GB units a square-planar geometry was stabilized [(2)–(5) and (8)–(10)]. The second type of coordination behaviour was observed in the cobalt compounds [(14)–(16)]. Here the ligand coordinates monodentate through the imidazolic N(3); the structure is tetrahedral.  相似文献   

15.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:16,17-tribenzo-9,12,15-trioxacyclooktadeca-1,5-dien (L) was synthesized by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane. Then, its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes were synthesized by template effect by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements, mass spectra and cyclic voltammetry. All complexes are diamagnetic and Cu(II) complex is binuclear. The Co(II) was oxidized to Co(III). The comparative electrochemical studies show that the nickel complex exhibited a quasi-reversible one-electron reduction process while copper and cobalt complexes gave irreversible reduction processes in DMSO solution.  相似文献   

16.
Solid compounds of Cd(II), Hg(II) and Pb(II) with the sodium salt of morin-5′-sulfonic acid (NaMSA) were obtained. The molecular formula of the complexes are: Cd(C15H8O10SNa)2?·?6H2O, CdOH(C15H8O10SNa)?·?4H2O, Hg(C15H8O10S)?·?4H2O and Pb(C15H8O10S)?·?3H2O. Some of their physicochemical properties such as UV-Vis, infrared, 13C NMR and mass spectra, thermogravimetric analysis, and solubility were studied. On the basis of spectroscopic data NaMSA was bound to Cd2+ via 4C=O and 3C?–?oxygen and the Hg2+ and Pb2+ ions by 5C–OH, 4C=O and 3C–OH.  相似文献   

17.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

18.
The reaction of CoSO4 with 2,4‐oxydibenzoic acid (H2oba) and 4,4′‐bipyridine (bipy) under hydrothermal condition yielded a new one‐dimensional cobalt(II) coordination polymer, {[Co(C14H9O5)2(C10H8N2)(H2O)2]·2H2O}n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, magnetic properties and single‐crystal X‐ray diffraction. The CoII ions are connected by bipy ligands into infinite one‐dimensional chains. The Hoba ligands extend out from the two sides of the one‐dimensional chain. O—H...O hydrogen bonding extends these chains into a two‐dimensional supramolecular architecture.  相似文献   

19.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

20.
New cobalt(II) complexes with cyanuric acid C3H3N3O3 (L), namely, [CoL2(OH2)2]Cl2 · 4H2O, [CoL2(OH2)2]SO4 · 3H2O, and [CoL2(OH2)2](NO3)2, were synthesized. The IR absorption spectra (400–4000 cm?1) of these compounds and the initial ligand, their X-ray diffraction patterns, thermograms, and thermogravigrams were examined. The electric conductivity of their aqueous and methanolic solutions was studied. The individual character of the synthesized complexes was proved. The coordination mode of the acido groups was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号