首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report identification of the binding sites for an organometallic ruthenium anticancer complex [(η 6-biphenyl)Ru(en)Cl][PF6] (1; en = ethylenediamine) on the 15-mer single-stranded oligodeoxynucleotides (ODNs), 5′-CTCTCTX7G8Y9CTTCTC-3′ [X = Y = T (I); X = C and Y = A (II); X = A and Y = T (III); X = T and Y = A (IV)] by electrospray ionization mass spectrometry (ESI-MS) in conjunction with enzymatic digestion or tandem mass spectrometry (top-down MS). ESI-MS combined with enzymatic digestion (termed MS-based ladder-sequencing), is effective for identification of the thermodynamically-favored G-binding sites, but not applicable to determine the thermodynamically unstable T-binding sites because the T-bound adducts dissociate during enzymatic digestion. In contrast, top-down MS is efficient for localization of the T binding sites, but not suitable for mapping ruthenated G bases, due to the facile fragmentation of G bases from ODN backbones prior to the dissociation of the phosphodiester bonds. The combination of the two MS approaches reveals that G8 in each ODN is the preferred binding site for 1, and that the T binding sites of 1 are either T7 or T11 on I and IV, and either T6 or T11 on II and III, respectively. These findings not only demonstrate for the first time that T-bases in single-stranded oligonucleotides are kinetically competitive with guanine for such organoruthenium complexes, but also illustrate the relative merits of the combination of ladder-sequencing and top-down MS approaches to elucidate the interactions of metal anticancer complexes with DNA.   相似文献   

2.
Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O 2, N3, and O 4) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3′–O3′ bond, the incorporation of an alkyl group to the O 2 position and, to a much lesser extent, the O 4 position, but not the N3 position of thymine, led to facile cleavage of the C3′–O3′ bond on the 3′ side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation.
?  相似文献   

3.
Infrared multiple-photon dissociation (IRMPD) spectroscopy and DFT calculations have been used to probe the most stable structures of a 3 * and a 4 * ions derived from both protonated pentaglycine (denoted G5) and pentaalanine (A5). The a 3 * and a 4 * ions derived from protonated A5 feature a CHR=N-CHR’- group at the N-terminus and an oxazolone ring at the C-terminus, as proposed previously [J. Am. Soc. Mass Spectrom. 19, 1788–1798 (2008)]. The isomeric a 4 * ion derived from A5 with a 3,5-dihydro-4H-imidazol-4-one ring structure was calculated to have a slightly better energy than the oxazolone, but the barrier to its formation is higher and there was no evidence of this ion in the IRMPD spectrum. By contrast, the a 4 * and [a 4 – H2O]+ (denoted a 4 0 ) ions from G5 gave strikingly similar IRMPD spectra and both have the 3,5-dihydro-4H-imidazol-4-one ring structure similar to that recently reported for the [GGGG + H – H2O]+ ion [Int. J. Mass Spectrom. 316318, 268–272 (2012)]. In the absence of a solvent molecule, the pathway to the oxazolone is calculated to be lower than those to thermodynamically more stable products, the a 4 0 and the a 4 * with the 3,5-dihydro-4H-imidazol-4-one ring structure. Incorporation of one water molecule is sufficient to reduce the barrier to formation of the a 4 0 of G5 to below that for formation of the oxazolone. On the equivalent potential energy surface for protonated A5 the barrier to formation of the a 4 0 ion is 12.3 kcal mol–1 higher than that for oxazolone formation and the a 4 0 ion is not observed experimentally.
Figure
?  相似文献   

4.
An efficient template-directed photoligation of oligodeoxynucleotide (ODN) using 7-deaza-2′-deoxyadenosine derivative VZA is described. When ODN containing VZA at the 5′ end was photoirradiated with ODNs containing a pyrimidine base at the 3′ end in the presence of template ODN, rapid and efficient ligation (cycloaddition reaction) was observed without any byproduct formation. ODNs containing VZA showed an extremely high reactivity as compared with those reported in previous photoligations.  相似文献   

5.
The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation–cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000–1900 cm-1. The IRMPD spectra of the Li+(cytosine), Na+(cytosine), and K+(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb+(cytosine) and Cs+(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation–cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M+(C1).
Figure
?  相似文献   

6.
The interaction between papain and two typical ionic liquids (ILs), 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), was investigated by using fluorescence spectroscopy technique at a pH value of 7.4. The results suggested that ILs could quench the intrinsic fluorescence of papain probably via a static quenching mechanism. The binding constants were determined by employing the fluorescence quenching method. They were very small compared with that of volatile organic solvents, indicating that only very weak interaction between ILs and papain existed. The Gibbs free energy change (?G), enthalpy change (?H), and entropy change (?S) during the interaction of papain and ILs were estimated. Negative values of these parameters indicated that the interaction between ILs and papain was a spontaneous process, also implying that hydrogen bonding and van der Waals forces played important roles in the interaction processes.
Figure
Three-dimensional fluorescence spectrum of papain (0.2?g?L-1)  相似文献   

7.
(A), (B) and (C) were prepared by solid state reactions. Single crystals of quenched samples were examined by X-ray investigation. On the opposite of A2TiO5-pseudobrookite compounds (A), (B) and (C) crystallize with a high ordered metaldistribution on the point positions 4c and 8f.  相似文献   

8.
In the present density functional theory study, we have compared intrinsic properties of non-natural nucleobases (acA, acG, acC, and acT nucleobases) such as proton affinities, gas phase acidities, tautomerization, and hydrogen-bonding properties with those in normal Watson–Crick nucleobases (A, G, C, T nucleobases). The hydrogen-bonding interactions in non-natural and Watson–Crick base pairs were studied at B3LYP/6-311++G (d,p) level regarding their geometries, energies, and topological features of the electron density. The quantum theory of atoms-in-molecule (QTAIM) and natural bond orbital (NBO) analyses were employed to elucidate the interaction characteristics in base pairs. The electron density ρ(r) as well as its Laplacian $ \nabla^{2} $ ρ(r) at the hydrogen bond critical point predicted by QTAIM is strongly correlated with hydrogen bond structural parameter and the second-order perturbation energies in NBO scheme. Our results show that most of hydrogen bonds in normal Watson–Crick and non-natural base pairs must be considered as electrostatic interactions. Results of calculations revealed that energetic values of hydrogen bonds in TA base pair are more than those in ac Tac A base pair, while values of hydrogen bonds in CG base pair and ac Cac G base pair are almost the same. These results confirmed stability order of stabilization energies of these base pairs.  相似文献   

9.
The antitumor drug cisplatin (cis‐[PtCl2(NH3)2]) reacts with cellular DNA to form GG intrastrand adducts between adjacent guanines as predominant lesions. GGG sites have been shown to be hotspots of platination. To study the structural perturbation induced by binding of cisplatin to two adjacent guanines of a GGG trinucleotide, we examined here the decanucleotide duplex d[(G1C2C3 G6T7‐ C8G9C10) ? d(G11C12G13A14C15C16C17G18‐ G19C20)] ( dsCG*G*G ) intrastrand cross‐linked at the G* guanines by cis‐{Pt(NH3)2}2+ using NMR spectroscopy and molecular dynamics (MD) simulations. The NMR spectra of dsCG*G*G were found to be similar to those of previously characterized DNA duplexes cross‐linked by cisplatin at a pyG*G*X site (py=pyrimidine; X=C, T, A). This similarity of NMR spectra indicates that the base at the 3′‐side of the G*G*–Pt cross‐link does not affect the structure to a large extent. An unprecedented reversible isomerization between the duplex dsCG*G*G (bearing a –Pt chelate) and duplex dsGG*G*T (bearing a –Pt chelate) was observed, which yielded a 40:60 equilibrium between the two intrastrand GG–Pt cross‐links. No formation of interstrand cross‐links was observed. NMR spectroscopic data of dsCG*G*G indicated that the deoxyribose of the 5′‐G* adopts an N‐type conformation, and the cytidines C3, C15, and C16 have average phase angles intermediate between S and N. The NMR spectroscopic chemical shifts of dsGG*G*T showed some fundamental differences to those of pyG*G*–platinum adducts but were in agreement with the NMR spectra reported previously for the DNA duplexes cross‐linked at an AG*G*C sequence by cisplatin or oxaliplatin. The presence of a purine instead of a pyrimidine at the 5′‐side of the G*G* cross‐link seems therefore to affect the structure of the XG* step significantly.  相似文献   

10.
Isomeric structures, energies, and properties of silacyclopropylidenoids, C2H4SiMX (where M?=?Li or Na and X?=?F, Cl or Br), were studied ab initio at the HF and MP2 levels of theory using the 6-31+G(d,p) and aug-cc-pVTZ basis sets. The calculations indicate that each of C2H4SiMXs has three stationary structures: silacyclopropylidenoid (S), tetrahedral (T), and inverted (I). All of the silacyclopropylidenoid (S) forms are energetically more stable than others except that S-LiF is by only 0.7?kcal/mol higher in energy than I-LiF. In contrast, all of the tetrahedral (T) forms are the most unstable ones except for T-NaF. Energy differences between S, T, and I forms range from 0.70 to 8.70?kcal?mol?1 at the MP2/6-31+G(d,p) level. In addition, the molecular electrostatic potential maps, natural bond orbitals, and frontier molecular orbitals were calculated at the MP2/6-31+G(d,p) level.  相似文献   

11.
Energetic, geometric and magnetic criteria were applied to examine the stability and/or aromatic character for the cyclic molecules C 4 H 4 M (M = O, S, Se, Te, NH, PH, AsH and SbH) at B3LYP/6-311++G** and MP2/6-311++G** levels of theory. The isodesmic reactions and nuclear independent chemical shifts (NICS) calculations were utilized to examine the molecules for energetic and magnetic criteria, respectively. The isodesmic reaction energies reveal that thiophene (C 4 H 4 S, ?23.269 kcal/mol) and pyrrole (C 4 H 4 NH, ?20.804 kcal/mol) have the greatest aromatic stabilization energies and tellurophene (C 4 H 4 Te, ?15.114 kcal/mol) and stibole (C 4 H 4 SbH, ?1.169 kcal/mol) have the lowest aromatic stabilization energies in their corresponding groups at MP2/6-311++G**. The NICS calculations confirmed the results obtained through isodesmic reaction energies.  相似文献   

12.
Tandem mass spectrometry is a well-established analytical tool for rapid and reliable characterization of oligonucleotides (ONs) and their gas-phase dissociation channels. The fragmentation mechanisms of native and modified nucleic acids upon different mass spectrometric activation techniques have been studied extensively, resulting in a comprehensive catalogue of backbone fragments. In this study, the fragmentation behavior of highly charged oligodeoxynucleotides (ODNs) comprising up to 15 nucleobases was investigated. It was found that ODNs exhibiting a charge level (ratio of the actual to the total possible charge) of 100% follow significantly altered dissociation pathways compared with low or medium charge levels if a terminal pyrimidine base (3' or 5') is present. The corresponding product ion spectra gave evidence for the extensive loss of a cyanate anion (NCO), which frequently coincided with the abstraction of water from the 3'- and 5'-end in the presence of a 3'- and 5'-terminal pyrimidine nucleobase, respectively. Subsequent fragmentation of the M-NCO ion by MS3 revealed a so far unreported consecutive excision of a metaphosphate (PO3 )-ion for the investigated sequences. Introduction of a phosphorothioate group allowed pinpointing of PO3 loss to the ultimate phosphate group. Several dissociation mechanisms for the release of NCO and a metaphosphate ion were proposed and the validity of each mechanism was evaluated by the analysis of backbone- or sugar-modified ONs.
Graphical abstract
?  相似文献   

13.
Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca2+, Mg2+, and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.
Figure
?  相似文献   

14.
Sequence scrambling from y-type fragment ions has not been previously reported. In a study designed to probe structural variations among b-type fragment ions, it was noted that y fragment ions might also yield sequence-scrambled ions. In this study, we examined the possibility and extent of sequence-scrambled fragment ion generation from collision-induced dissociation (CID) of y-type ions from four peptides (all containing basic residues near the C-terminus) including: AAAAHAA-NH2 (where “A” denotes carbon thirteen (13C1) isotope on the alanine carbonyl group), des-acetylated-α-melanocyte (SYSMEHFRWGKPV-NH2), angiotensin II antipeptide (EGVYVHPV), and glu-fibrinopeptide b (EGVNDNEEGFFSAR). We investigated fragmentation patterns of 32 y-type fragment ions, including y fragment ions with different charge states (+1 to +3) and sizes (3 to 12 amino acids). Sequence-scrambled fragment ions were observed from ~50 % (16 out of 32) of the studied y-type ions. However, observed sequence-scrambled ions had low relative intensities from ~0.1 % to a maximum of ~12 %. We present and discuss potential mechanisms for generation of sequence-scrambled fragment ions. To the best of our knowledge, results on y fragment dissociation presented here provide the first experimental evidence for generation of sequence-scrambled fragments from CID of y ions through intermediate cyclic “b-type” ions.
Figure
?  相似文献   

15.
The reactions of [Ru3(CO)10(μ-dppm)] 4 with quinolines afforded [Ru3 (μ-CO)(CO)732-P(C6H5)CH2P(C6H5)2)}{μ-η2-C9H5(R)N}] (8, R = 4-Me; 9, R = H) as the major products along with small amounts of known compound [Ru3(CO)933-P(C6H5)CH2P(C6H5)(C6H4)}] 5. The molecular structure of 8 has been determined by single crystal X-ray studies. The reaction of 5 with 4-methylquinoline in refluxing cyclohexane afforded 8 and two known dinuclear compounds, [Ru2(CO)6{μ-CH2P(C6H5)(C6H4)P(C6H5}] 10 and [Ru2(CO)6 {μ-(C6H4)P(C6H5)(CH2)P(C6H5}] 11, in 40, 12, and 10% yields, respectively. The compounds 10 and 11 are also formed from the thermolysis of 4 in addition to the major compound 5. The solid state structure of the previously reported [Ru3(CO)10(η-H){μ-η2-C9H6N}] 2a is also reported for comparison.  相似文献   

16.
A glycol ether modified precursor, [Nb{O(CH2CH2O)2}(OPri)3] (A) was prepared by the reaction of Nb(OPri)5 with O(CH2CH2OH)2 in 1:1 molar ratio in anhydrous benzene. Further reactions of A with a variety of internally functionalized oximes in different molar ratios, yielded heteroleptic complexes of the type, [Nb{O(CH2CH2O)2}(OPri)3?n{ON = C(CH3)(Ar)}n] (1–9) {where Ar = C4H3O-2, n = 1 [1], n = 2 [2], n = 3 [3]; C4H3S-2, n = 1 [4], n = 2 [5], n = 3 [6]; C5H4N-2, n = 1 [7], n = 2 [8], n = 3 [9]}. All the above derivatives have been characterized by elemental analyses, FT-IR, NMR (1H, 13C {1H}) and FAB mass studies. Spectral studies of 1–9 suggest the presence of mono- and bi-dentate mode of oxime moieties, in the solution and in the solid states, respectively. FAB mass studies indicate monomeric nature for 3 and dimeric nature for A. TG curves of A and 6 show their low thermal stability. Soft transformation of A and 3 to pure niobia, a and b, respectively have been carried out by sol–gel technique. The XRD patterns of niobia a and b suggest the formation of nano-size crystallites of average size of 10.8 and 19.5 nm, respectively. The XRD patterns also indicate the formation of monoclinic phase of the niobia in both the cases. Absorption spectra of a and b suggest energy band gaps of 4.95 and 4.39 eV, respectively.  相似文献   

17.
An attempt is made to maximize the solar energy storage in norbornadiene (1)/quadricyclane (2) system, through exchanging of heteroatoms at C7 of 1 and 2; calculating the corresponding energies at MP2/6-311++G(3df,2p)//B3LYP/6-311++G(3df,2p) and B3LYP/6-311++G** levels of theory. Free energy gaps between 1 X and 2 X, δG(1x)-(2x), and solar energy storage is the most for 1 Se, 1 As and 1 Al from group VIII, VII and III of the Table, respectively.  相似文献   

18.
Tandem mass spectrometry (MS/MS) confirmed decarboxylation as the major collision-induced dissociation (CID) pathway of deprotonated hydrocinnamic acid (C6H5CH2CH2CO2H), N-phenylglycine (C6H5NHCH2CO2H) and 3-pyridin-2-ylpropanoic acid (C5H4NCH2CH2CO2H). The structure and stability of isomeric precursor and product anions were examined using density functional theory and ab initio methods. Geometry optimizations and frequency calculations were performed using the B3LYP/6-31++G(2d,p) level of theory and basis set with additional single point energies calculated at the MP2/6-311++G(2d,p) level. The formation of a delocalized product anion by carboxyl group-mediated migration of a benzylic proton to the ortho position of the ring and subsequent Cα–CO2 bond cleavage was energetically more favorable than direct decarboxylation and rearrangements of anions within ion-neutral complexes with carbon dioxide. The energy barrier for rearrangement of the delocalized product anion to the more stable benzylic anion was lowest in the fragmentation pathway of 3-pyridin-2-ylpropanoate. More energetically demanding fragmentation processes were indicated by the formation of other product anions at higher collision energy. Computations supported the feasibility of the formation of hydroxycarbonyl, styrene, and phenide ions from the benzylic anion of hydrocinnamate and the corresponding product anions from the nitrogen-containing analogues. The loss of dihydrogen from decarboxylated 3-pyridin-2-ylpropanoate was characterized computationally as hydride abstraction of an aryl proton. Overall, the results highlight the importance of exploring rearrangements in the fragmentation pathways of ions formed by electrospray ionization (ESI).
Figure
?  相似文献   

19.
This article describes the use of microwave-assisted extraction (MAE) as a pretreatment technique for the determination of aflatoxins B1, G1, B2, and G2 in grains and grain products. The optimal operation parameters, including extraction solvent, temperature, and time, were identified to be acetonitrile as the extraction solvent at 80 °C with 15 min of MAE. The extracts were cleaned up using solid-phase extraction followed by derivatization with trifluoroacetic acid and were determined by liquid chromatography–fluorescence detection. A Sep-Pak cartridge was chosen over Oasis HLB and Bond Elut cartridges. By the use of aflatoxin M1 as an internal standard, relative recoveries of the aflatoxins ranged from 90.7 to 105.7 % for corn and from 88.1 to 103.4 % for wheat, with relative standard deviations between 2.5 and 8.7 %. A total of 36 samples from local markets were analyzed, and aflatoxin B1 was found to be the predominant toxin, with concentrations ranging from 0.42 to 3.41 μg/kg.
Figure
Methodology for aflatoxins B1, G1, B2 and G2 determination in grains and grain products.  相似文献   

20.
We have prepared the hydrophobic amino-functionalized ionic liquid (IL) 1-(2-aminoethyl)-3-butylimidazolium hexafluorophosphate and investigated its extraction behavior for copper(II) ion as a model cation. The IL, due to the presence of an amino group, is capable of complexing Cu(II) in a ratio of 6:1. The parameters affecting the extraction efficiency were optimized. The IL-based liquid–liquid microextraction was successfully applied to the analysis of Cu(II) in an environmental water standard reference material. The results are promising in terms of liquid–liquid microextraction, separation, and preconcentration of Cu(II).
Figure
A hydrophobic amino-functionalized ionic liquid (IL) [NH2C2C4im][PF6] was synthesized. The IL exhibits good extractability for copper (II) ion due to the presence of an amino group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号