首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional electrospray ionization mass spectrometry (ESI-MS) uses a capillary for sample loading and ionization. Along with the development of ambient ionization techniques, ESI-MS using noncapillary emitters has attracted more interest in recent years. Following our recent report on ESI-MS using wooden tips (Anal. Chem. 83, 8201–8207 (2011)), the technique was further investigated and extended in this study. Our results revealed that the wooden tips could serve as a chromatographic column for separation of sample components. Sequential and exhaustive ionization was observed for proteins and salts on wooden tips with salts ionized sooner and proteins later. Nonconductive materials that contain microchannels/pores could be used as tips for ESI-MS analysis with sample solutions loaded to the sharp-ends only, since rapid diffusion of sample solutions by capillary action would enable the tips to become conductive. Tips of inert materials such as bamboo, fabrics, and sponge could be used for sample loading and ionization, while samples such as tissue, mushroom, and bone could form tips to induce ionization for direct analysis with application of a high voltage.
Figure  相似文献   

2.
This study demonstrates the first application of field-induced wooden-tip electrospray ionization (ESI) mass spectrometry (MS) for high-throughput analysis of herbal medicines. By application of an opposite and sample-contactless high voltage on the MS inlet rather than wooden tips, a high-throughput analysis device is easily set up, and a relatively fast analysis speed of 6 s per sample was successfully achieved. In addition, fast polarity switching between positive and negative ion detection mode is readily accomplished, which provides more complete chemical information for quality assessment and control of herbal medicines. By using the proposed method, various active ingredients present in different herbal medicines were rapidly detected, and the obtained mass spectra were served as the samples' fingerprints for tracing the origins, establishing the authenticity, and assessing the quality consistency and stability of herbal medicines. Our experimental results demonstrated that field-induced wooden-tip ESI-MS is a desirable method for high-throughput analysis of herbal medicines, with promising prospects for rapidly differentiating the origin, determining the authenticity, and assessing the overall quality of pharmaceuticals.  相似文献   

3.
A high-throughput method for rapid screening of active ingredients in drugs has been developed with mass spectrometry coupled to a low-temperature plasma (LTP) probe ion source. Without sample preparation or pretreatment, the active ingredients of 11 types of commercial pharmaceuticals, including hormones, antipyretic analgesics, cardiovascular, digestant, neuro-psychotherapeutic, diuretic, antithyroid, sulfa anti-inflammatory, antiparastic, sedative-hypnotics, and antibacterial, were directly desorbed/ionized and detected by a linear ion trap mass spectrometry (MS). The structures of these ingredients were elucidated by tandem MS. The analysis of 18 methyltestosterone tablets could be accomplished within 1.9 min, which allows fast detection with a speed of approximate 600 samples within 1 h. This work demonstrated that LTP probe ion source combined with MS is a high-throughput method for screening of pharmaceuticals and potentially applied to on-line quality control in pharmaceutical industry.
Figure
Schematic diagram of LTP probe for ambient ionization MS  相似文献   

4.
Noncovalent interactions govern how molecules communicate. Mass spectrometry is an important and versatile tool for the analysis of noncovalent complexes (NCX). Electrospray mass spectrometry (ESI-MS) is the most widely used MS technique for the study of NCXs because of its softer ionization and easy compatibility with the solution phase of NCX mixtures. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has also been used to study NCXs. However, successful analysis depends upon several experimental factors, such as matrix selection, solution pH, and instrumental parameters. In this study, we employ MALDI imaging mass spectrometry to investigate the location and formation of NCXs, involving both peptides and proteins, in a MALDI sample spot.
Figure
?  相似文献   

5.
The detection of regulated and forbidden herbs in pharmaceutical preparations and nutritional supplements is a growing problem for laboratories charged with the analysis of illegal pharmaceutical preparations and counterfeit medicines. This article presents a feasibility study of the use of chromatographic fingerprints for the detection of plants in pharmaceutical preparations. Fingerprints were developed for three non-regulated common herbal products—Rhamnus purshiana, Passiflora incarnata L. and Crataegus monogyna—and this was done by combining three different types of detection: diode-array detection, evaporative light scattering detection and mass spectrometry. It is shown that these plants could be detected in respective triturations of the dry extracts with lactose and three different herbal matrices as well as in commercial preparations purchased on the open market.
Figure
Detection of Passiflora incarnata in three commercial preparations using chromatographic fingerprints  相似文献   

6.
Matrix assisted ionization of nonvolatile compounds is shown not to be limited to vacuum conditions and does not require a laser. Simply placing a solution of analyte dissolved with a suitable matrix such as 3-nitrobenzonitrile (3-NBN) or 2,5-dihydroxyacetophenone on a melting point tube and gently heating the dried sample near the ion entrance aperture of a mass spectrometer using a flow of gas produces abundant ions of peptides, small proteins, drugs, and polar lipids. Fundamental studies point to matrix-mediated ionization occurring prior to the entrance aperture of the mass spectrometer. The method is analytically useful, producing peptide mass fingerprints of bovine serum albumin tryptic digest consuming sub-picomoles of sample. Application of 100 fmol of angiotensin I in 3-NBN matrix produces the doubly and triply protonated molecular ions as the most abundant peaks in the mass spectrum. No carryover is observed for samples containing up to 100 pmol of this peptide. A commercial atmospheric samples analysis probe provides a simple method for sample introduction to an atmospheric pressure ion source for analysis of volatile and nonvolatile compounds without using the corona discharge but using sample preparation similar to matrix-assisted laser desorption/ionization.
Figure
?  相似文献   

7.
An introduction to the principle and possibilities of the new method of circular dichroism laser mass spectrometry is given and its state of development is reviewed. This method allows enantiosensitive, mass-selective probing of chiral molecules. It is based on the combination of resonance-enhanced multiphoton ionization with circularly polarized light and specially modified time-of-flight mass spectrometry. As an example, application to carbonyls is presented.
Figure
The combination of resonance enhanced multiphoton ionization and circular dichroism performed in a time-of-flight mass spectrometer allows mass selective enantio-sensitive spectroscopy with new features for chiral analysis  相似文献   

8.
Collision-induced dissociation (CID) of protonated N-benzylindoline and its derivatives was investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Elimination of benzene was observed besides hydride transfer and electron transfer reactions. D-labeling experiments and accurate mass determinations of the product ions confirm that the external proton is retained in the fragment ion, and the elimination reaction was proposed to be initiated by benzyl cation transfer rather than proton transfer. Benzyl cation transfer from the nitrogen atom to one of the sp2-hybridized carbon atoms in the indoline core is the key step, and subsequent proton transfer reaction leads to the elimination of benzene. Density functional theory (DFT)-based calculations were performed and the computational results also support the benzyl cation/proton transfer mechanism.
Figure
?  相似文献   

9.
We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.
Figure
?  相似文献   

10.
Electrospray ionization mass spectrometry (ESI-MS) at flow rates below ~10 nL/min has been only sporadically explored because of difficulty in reproducibly fabricating emitters that can operate at lower flow rates. Here we demonstrate narrow orifice chemically etched emitters for stable electrospray at flow rates as low as 400 pL/min. Depending on the analyte concentration, we observe two types of MS signal response as a function of flow rate. At low concentrations, an optimum flow rate is observed slightly above 1 nL/min, whereas the signal decreases monotonically with decreasing flow rates at higher concentrations. For example, consumption of 500 zmol of sample yielded signal-to-noise ratios ~10 for some peptides. In spite of lower MS signal, the ion utilization efficiency increases exponentially with decreasing flow rate in all cases. Significant variations in ionization efficiency were observed within this flow rate range for an equimolar mixture of peptide, indicating that ionization efficiency is an analyte-dependent characteristic for the present experimental conditions. Mass-limited samples benefit strongly from the use of low flow rates and avoiding unnecessary sample dilution. These findings have important implications for the analysis of trace biological samples.
Figure
?  相似文献   

11.
To analyze compounds in complicated matrixes using mass spectrometry, we describe a novel ambient ionization approach, termed paper assisted ultrasonic spray ionization (PAUSI). The ionization process is based on the ultrasonic vibration of the piezoelectric ceramic disk, on which the samples are placed. Porous materials are utilized to generate fine initial droplet, which could alleviate matrix effect during ionization process for complicated matrix. PAUSI was evaluated as an attractive tool to screen analytes from complicated matrixes, such as (1) bovine serum with NaCl 150 g/L, (2) viscous samples, and (3) biological fluid, without any sample preparation. Moreover, it provides great advantage in simplifying the mass spectrometry analysis process, and the ionization device is inexpensive and easy to operate.
Figure
?  相似文献   

12.
Direct inject electrospray mass spectrometry offers minimal sample preparation and a “shotgun” approach to analyzing samples. However, complex matrix effects often make direct inject an undesirable sample introduction technique, particularly for trace level analytes. Highlighted here is our solution to the pitfalls of direct inject mass spectrometry and other ambient ionization methods with a focus on trace explosives. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry solves selectivity issues and reduces matrix effects while maintaining minimal sample preparation requirements. With appropriate solvent conditions, most explosive residues can be analyzed with this technique regardless of the nature of the substance (i.e., nitroaromatic, oxidizing salt, or peroxide).
Figure
?  相似文献   

13.
Measuring average quantities in complex mixtures can be challenging for mass spectrometry, as it requires ionization and detection with nearly equivalent cross-section for all components, minimal matrix effect, and suppressed signal from fragments and aggregates. Fragments and aggregates are particularly troublesome for complex mixtures, where they can be incorrectly assigned as parent ions. Here we study fragmentation and aggregation in six aromatic model compounds as well as petroleum asphaltenes (a naturally occurring complex mixture) using two laser-based ionization techniques: surface assisted laser desorption ionization (SALDI), in which a single laser desorbs and ionizes solid analytes; and laser ionization laser desorption mass spectrometry (L2MS), in which desorption and ionization are separated spatially and temporally with independent lasers. Model compounds studied include molecules commonly used as matrices in single laser ionization techniques such as matrix assisted laser desorption ionization (MALDI). We find significant fragmentation and aggregation in SALDI, such that individual fragment and aggregate peaks are typically more intense than the parent peak. These fragment and aggregate peaks are expected in MALDI experiments employing these compounds as matrices. On the other hand, we observe no aggregation and only minimal fragmentation in L2MS. These results highlight some advantages of L2MS for analysis of complex mixtures such as asphaltenes.
Figure
?  相似文献   

14.
A surface-assisted laser desorption/ionization (SALDI) source is coupled to the Orbitrap mass analyzer; the instrumental approach is tested for the analysis of rhenium (Re) and osmium (Os) complexes with 8-mercaptoquinoline. Silicon (Si) material obtained by laser treatment of monocrystalline Si is used as SALDI substrate. All studied complexes are detected as radical cations, with no protonated molecules. The comparison of SALDI, matrix-assisted laser desorption/ionization (MALDI), and direct laser desorption/ionization (LDI) on metal plates in the same instrumental setup demonstrated that the detection of the studied complexes using SALDI provides the highest sensitivity. The ability to analyze samples rapidly, high purity of spectra, and good analytical parameters make SALDI coupled to the Orbitrap mass analyzer a potentially powerful tool for the detection of Re and Os complexes and related organic, UV-absorbing compounds.
Figure
?  相似文献   

15.
The present study contributes to the evaluation of dielectric barrier discharge-based ambient ionization for mass spectrometric analysis (DBDI-MS) by providing a further step towards an understanding of underlying ionization processes. This examination highlights the effect of physical discharge modes on the ionization efficiency of the DBDI source. A distinction is made between the homogeneous and filamentary discharge mode due to different plasma gases in barrier configurations. Therefore, we first report on discharge modes of DBDI by demonstrating a universally applicable method to classify the predominant modes. Then, the ionization efficiency of these two modes is evaluated by a laser desorption-DBDI-MS with different molecular analytes. Here, the laser desorption is used to deliver neutral analytes which will be ionized by the plasma jet applied as dielectric barrier discharge ionization. With a clear increase of signal intensities in the homogeneous mode in contrast to the filamentary one, the present study indicates a pronounced dependence of the ionization efficiency on the discharge mode allowing further insight into the mechanisms of the ionization process.
Figure
He-DBD-jet, propazine mass spectrum, MHCD  相似文献   

16.
In this work, desorption of nonvolatile analytes induced by friction was studied. The nonvolatile compounds deposited on the perfluoroalkoxy substrate were gently touched by an ultrasonic cutter oscillating with a frequency of 40 kHz. The desorbed molecules were ionized by a dielectric barrier discharge (DBD) ion source. Efficient desorption of samples such as drugs, pharmaceuticals, amino acids, and explosives was observed. The limits of detection for these compounds were about 1 ng. Many compounds were detected in their protonated forms without undergoing significant fragmentation. When the DBD was off, no ions for the neutral samples could be detected, meaning that only desorption along with little ionization took place by the present technique.
Figure
?  相似文献   

17.
We describe the design, preparation, and mass-spectrometric characterization of a new recombinant peptide calibration standard with uniform biophysical and ionization characteristics for mass spectrometry. “PAS-cal” is an artificial polypeptide concatamer of peptide cassettes with varying lengths, each composed of the three small, chemically stable amino acids Pro, Ala, and Ser, which are interspersed by Arg residues to allow site-specific cleavage with trypsin. PAS-cal is expressed at high yields in Escherichia coli as a Small Ubiquitin-like MOdifier (SUMO) fusion protein, which is easily purified and allows isolation of the PAS-cal moiety after SUMO protease cleavage. Upon subsequent in situ treatment with trypsin, the PAS-cal polypeptide yields a set of four defined homogeneous peptides in the range from 2 to 8 kDa with equal mass spacing. ESI-MS analysis revealed a conveniently interpretable raw spectrum, which after deconvolution resulted in a very simple pattern of four peaks with similar ionization signals. MALDI-MS analysis of a PAS-cal peptide mixture comprising both the intact polypeptide and its tryptic fragments revealed not only the four standard peptides but also the singly and doubly charged states of the intact concatamer as well as di- and trimeric adduct ion species between the peptides, thus augmenting the observable m/z range. The advantageous properties of PAS-cal are most likely a result of the strongly hydrophilic and conformationally disordered PEG-like properties of the PAS sequences. Therefore, PAS-cal offers an inexpensive and versatile recombinant peptide calibration standard for mass spectrometry in protein/peptide bioanalytics and proteomics research, the composition of which may be further adapted to fit individual needs.
Figure
?  相似文献   

18.
A new method for measuring perfluoroalkyl contaminants (PFCs) in biological matrices has been developed. An ultra-high pressure liquid chromatograph equipped with a quadrupole time-of-flight mass spectrometer (UPLC-QToF) was optimized using a continuous precursor/product ion monitoring mode. Unlike traditional targeted studies that isolate precursor/product ion pairs, the current method alternates between two ionization energy channels to continuously capture standard electrospray ionization (low energy) and collision induced dissociation (high energy) spectra. The result is the indiscriminant acquisition of paired low and high energy spectra for all constituents eluting from the chromatographic system. This technique was evaluated for the routine analysis of perfluoroalkyl species. Using this technique, linear perfluoroalkyl carboxylic acids (C4 to C14) and perfluoroalkyl sulfonates (C4, C6, C8 and C10) exhibited a linear range spanning over three orders of magnitude and were detectable at levels less than 1 pg on column with a root mean squared signal to noise ratio of 5 to 20. Lake trout (Salvelinus namaycush) and National Institutes of Standards and Technology Standard Reference Material 1946 were used to evaluate matrix effects and the accuracy of this method when applied to a whole fish extract. The current method was also evaluated as a diagnostic tool to identify unknown PFCs using experimental fragmentation patterns, mass defect filtering and Kendrick plots.
Figure
The future of toxics analysis in biological media: cataloging spectral fingerprints at targeted analysis sensitivity.  相似文献   

19.
An optimised and validated method for the determination of pharmaceutical residues in blue mussels (Mytilus spp.) is presented herein, as well as an investigation of the effect of cooking (by steaming) on any potential difference in human exposure risk. Selected pharmaceuticals included two non-steroidal anti-inflammatory drugs (diclofenac and mefenamic acid), an antibiotic (trimethoprim), an anti-epileptic (carbamazepine) and a lipid regulator (gemfibrozil). An in vivo exposure experiment was set up in the laboratory in which mussels were exposed either directly by injection (10 ng) or daily through spiked artificial seawater (ASW) over 96 h. In liquid matrices, pharmaceutical residues were either determined using liquid chromatography–tandem mass spectrometry (LC-MS/MS) directly, or in combination with solid-phase extraction (SPE) for analyte concentration purposes. The extraction of pharmaceuticals from mussel tissues used an additional pressurised liquid extraction step prior to SPE and LC-MS/MS. Limits of quantification of between 2 and 46 ng L?1 were achieved for extracted cooking water and ASW, between 2 and 64 μg L?1 for ASW in exposure tanks, and between 4 and 29 ng g?1 for mussel tissue. Method linearities were achieved for pharmaceuticals in each matrix with correlation coefficients of R 2?>?0.975. A selection of exposed mussels was also cooked (via steaming) and analysed using the optimised method to observe any effect on detectable concentrations of parent pharmaceuticals present. An overall increase in pharmaceutical residues in the contaminated mussel tissue and cooking water was observed after cooking.
Figure
Pharmaceutical residues in cooked and uncooked marine bivalves  相似文献   

20.
The fourth harmonic emission (200 nm) of a femtosecond Ti:sapphire laser (35 fs) was generated and used in the multiphoton ionization of 49 pesticides in gas chromatography/time-of-flight mass spectrometry. The limit of detection was improved when the ionization source from the third harmonic emission (267 nm) was replaced with the fourth harmonic emission for several pesticide molecules that contained no conjugated double bonds since their absorption bands are located in the far-ultraviolet region. This analytical instrument was used in the analysis of a series of real samples including potatoes, carrots, and cabbage, and a signal suspected to arise from di-allate was observed for the potato sample.
Figure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号