首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Many biocolloids, biological cells and micro-organisms are soft particles, consisted with a rigid inner core covered by an ion-permeable porous membrane layer. The electrophoretic motion of a soft spherical nanoparticle in a nanopore filled with an electrolyte solution has been investigated using a continuum mathematical model. The model includes the Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes and Brinkman equations for the hydrodynamic fields outside and inside the porous membrane layer, respectively. The effects of the “softness” of the nanoparticle on its electrophoretic velocity along the axis of a nanopore are examined with changes in the ratio of the radius of the rigid core to the double layer thickness, the ratio of the thickness of the porous membrane layer to the radius of the rigid core, the friction coefficient of the porous membrane layer, the fixed charge inside the porous membrane layer of the particle and the ratio of the radius of the nanopore to that of the rigid core. The presence of the soft membrane layer significantly affects the particle electrophoretic mobility.  相似文献   

2.
This paper considered electrophoretic motion of a sphere in an aqueous electrolyte solution in a microchannel under the gravitational field. In an externally applied electric field, the negatively charged sphere will move toward the anode. At the same time, the sphere will move toward the lower channel wall due to the density difference and the gravity. When the sphere moves very close to the lower wall, the buoyancy, the electric double layer interaction force, and the van der Waals force balance the gravity force, so the sphere moves parallel to the lower wall. A theoretical model for the electrophoretic motion of a sphere in a microchannel, with the consideration of the electrophoretic retardation effect, is presented in this paper. It was found that the sphere's motion in the microchannel is affected by its size, the density difference, the zeta potentials of the sphere and the channel wall, and the applied electric strength. The effects of these factors on the sphere's transport distance in the microchannel are discussed. It was found that the spheres with the same surface charge could be separated by their size within a certain range of ka in aqueous solutions in the microchannel.  相似文献   

3.
A charged spherical particle is concentrically positioned in a converging-diverging nanotube filled with an electrolyte solution, resulting in an electric double layer (EDL) forming around the particle's surface. In the presence of an axially applied electric field, the particle electrophoretically migrates along the axis of the nanotube due to the electrostatic and hydrodynamic forces acting on the particle. In contrast to a cylindrical nanotube with a constant cross-sectional area in which the electric field is almost uniform, the presence of a converging-diverging section in a nanotube alters the electric field, perturbs the charge distribution, and induces a pressure gradient and a recirculating flow that affect the electrostatic and hydrodynamic forces acting on both the particle and the fluid. Depending on the magnitude of the surface charge density along the nanotube's wall, the particle's electrophoretic motion may be significantly accelerated as the particle transverses the converging-diverging section. A continuum model consisting of the Nernst-Planck, Poisson, and Navier-Stokes equations for the ionic concentrations, electric potential, and flow field is implemented to compute the particle's velocity as a function of the particle's size, the nanotube's geometry, surface charges, electric field intensity, bulk electrolyte concentration, and the particle's location. When the particle is negatively charged and the wall of the nanotube is uncharged, the particle migrates in the direction opposite to that of the applied electric field and the presence of the converging-diverging section significantly accelerates the particle's motion. This, however, is not always true when the nanotube's wall is charged with the same sign as that of the particle. Once the ratio of the surface charge density of the nanotube's wall to that of the particle exceeds a certain value, the negatively charged particle will not translocate through the tube toward the anode and does not attain the maximum velocity at the throat of the converging-diverging section. One can envision such a device to be a nanofilter that allows molecules with surface charge densities much higher than that of the wall to go through the nanofilter, while preventing molecules with surface charge densities lower than that of the wall from passing through the nanofilter. The induced recirculating flow may be used to enhance mixing and to stretch, fold, and trap molecules in nanofluidic detectors and reactors.  相似文献   

4.
Hsu JP  Kuo CC  Ku MH 《Electrophoresis》2006,27(16):3155-3165
The electrophoresis of a toroid (doughnut-shaped entity) along the axis of a long cylindrical pore is analyzed under the conditions of low surface potential and weak applied electric field. The system under consideration is capable of modeling the electrophoretic behavior of various types of biocolloid such as bacterial DNA, plasmid DNA, and anabaenopsis, in a confined space. The influences of the key parameters of the problem, including the sizes of a toroid, the radius of a pore, and the thickness of the double layer, on the electrophoretic mobility of a toroid are discussed. We show that the electrophoretic behavior of a toroid under typical conditions can be different from that of an integrated entity. For instance, although the presence of the pore wall has the effect of retarding the movement of a particle, it becomes advantageous if a toroid is sufficiently close to the boundary. Several interesting behaviors are also observed, for example, the mobility of a toroid when the boundary effect is significant can be larger than that when it is insignificant.  相似文献   

5.
Electrolyte chemistry plays an important role in the transport properties of analytes through nanopores. Here, we report the translocation properties of the protein human serum transferrin (hSTf) in asymmetric LiCl salt concentrations with either positive (Ctrans/Ccis < 1) or negative chemical gradients (Ctrans/Ccis > 1). The cis side concentration was fixed at 4 M for positive chemical gradients and at 0.5 M LiCl for negative chemical gradients, while the trans side concentration varied between 0.5 to 4 M which resulted in six different configurations, respectively, for both positive and negative gradient types. For positive chemical gradient conditions, translocations were observed in all six configurations for at least one voltage polarity whereas with negative gradient conditions, dead concentrations where no events at either polarity were observed. The flux of Li+ and Cl ions and their resultant cation or anion enrichment zones, as well as the interplay of electrophoretic and electroosmotic transport directions, would determine whether hSTf can traverse across the pore.  相似文献   

6.
Liu KL  Hsu JP  Hsu WL  Yeh LH  Tseng S 《Electrophoresis》2012,33(6):1068-1078
The diffusiophoresis of a polyelectrolyte subject to an applied salt concentration gradient is modeled theoretically. The entirely porous type of particle is capable of simulating entities such as DNA, protein, and synthetic polymeric particles. The dependence of the diffusiophoretic behavior of the polyelectrolyte on its physical properties, and the types of ionic species and their bulk concentrations are discussed in detail. We show that in addition to the effects coming from the polarization of double layer and the difference in the ionic diffusivities, the polarization of the condensed counterions inside the polyelectrolyte might also be significant. The last effect, which has not been reported previously, reduces both the electric force and the hydrodynamic force acting on the polyelectrolyte. Both the direction and the magnitude of the diffusiophoretic velocity of the polyelectrolyte are found to highly depend upon its physical properties. These results provide valuable references for applications such as DNA sequencing and catalytic nano- or micromotors.  相似文献   

7.
Electrophoretic motion of a charged porous sphere within micro- and nanochannels is investigated theoretically. The Brinkman model and the full non-linear Poisson-Boltzmann equation are adopted to model the system, with the charged porous sphere resembling polyelectrolytes like proteins and DNA. General electrokinetic equations are employed and solved with a pseudo-spectral method. Key parameters of electrokinetic interest are examined for their respective effect as well as overall impact on the particle motion. We found, among other things, that the confinement effect of the channel can be so drastic that 75% reduction of particle mobility is observed in some situations for a poorly permeable particle. However, only 15% for the corresponding highly permeable particle due to the allowance of fluid penetration which alleviates the retarding shear stress significantly. In particular, an intriguing phenomenon is observed for the highly permeable particle: the narrower the channel is, the faster the particle moves! This was experimentally observed as well in the literature on DNA electrophoresis within nanostructures. The reason behind it is thoroughly explained here. Moreover, charged channels can exert electroosmosis flow so dominant that sometimes it may even reverse the direction of the particle motion. Comparison with experimental data available in the literature for some polyelectrolytes is excellent, indicating the reliability of this analysis. The results of this study provide fundamental knowledge necessary to interpret experimental data correctly in various microfluidic and nanofluidic operations involving bio-macromolecules, such as in biosensors and Lab-on-a-chip devices.  相似文献   

8.
A rotaxane scaffold is used to align three photo/electroactive units along a supramolecular redox gradient leading to a cascade of through-space charge transfer reactions.  相似文献   

9.
We investigate the dynamics of polymer translocation through a nanopore under an externally applied field using the two-dimensional fluctuating bond model with single-segment Monte Carlo moves. We concentrate on the influence of the field strength E, length of the chain N, and length of the pore L on forced translocation. As our main result, we find a crossover scaling for the translocation time tau with the chain length from tau approximately N2nu for relatively short polymers to tau approximately N1+nu for longer chains, where nu is the Flory exponent. We demonstrate that this crossover is due to the change in the dependence of the translocation velocity v on the chain length. For relatively short chains v approximately N-nu, which crosses over to v approximately N(-1) for long polymers. The reason for this is that with increasing N there is a high density of segments near the exit of the pore, which slows down the translocation process due to slow relaxation of the chain. For the case of a long nanopore for which R parallel, the radius of gyration Rg along the pore, is smaller than the pore length, we find no clear scaling of the translocation time with the chain length. For large N, however, the asymptotic scaling tau approximately N1+nu is recovered. In this regime, tau is almost independent of L. We have previously found that for a polymer, which is initially placed in the middle of the pore, there is a minimum in the escape time for R parallel approximately L. We show here that this minimum persists for weak fields E such that EL is less than some critical value, but vanishes for large values of EL.  相似文献   

10.
Computer simulation has been employed to study the effect of a confined space of a planar model pore with structureless hydrophobic walls on the hydration of Na+Cl ion pairs in water vapor at room temperature. A detailed many-body model of intermolecular interactions has been used. The model has been calibrated relative to experimental data on the free energy and enthalpy of the initial reactions of water molecule attachment to ions and the results of quantum-chemical calculations of the geometry and energy of Na+Cl (H2O)N clusters in stable configurations, as well as spectroscopic data on Na+Cl dimer vibration frequencies. The free energy and work of hydration, as well as the adsorption curve, have been calculated from the first principles by the bicanonical statistical ensemble method. The dependence of hydration shell size on interionic distance has been calculated by the method of compensation potential. The transition between the states of a contact (CIP) and a solvent-separated ion pair (SSIP) has been reproduced under the conditions of a nanopore. The influence of the pore increases with the hydration shell size and leads to the stabilization of the SSIP states, which are only conditionally stable in bulk water vapor.  相似文献   

11.
Electrophoretic motion is analyzed for a rigid, slightly deformed sphere with a nonuniform zeta potential distribution. Hydrodynamics and electrostatics solutions for the deformed sphere with an arbitrary double-layer thickness are determined by using the domain perturbation method. The surface shape and the zeta potential distribution for the deformed sphere are expressed by using the multipole expansion representation. In terms of monopole, dipole, and quadrupole moments of the surface shape and the zeta potential distribution, explicit expressions are obtained for the translational and rotational electrophoretic mobility tensors. The ensemble average for the mobility of the deformed sphere with a uniform orientation distribution is also derived. The utility of the general mobility expression is demonstrated by studying the electrophoretic motion of axisymmetric and ellipsoidal particles. The translational and rotational mobilities of axisymmetric particles are both affected by the monopole, dipole, and quadrupole moments of the zeta potential. For ellipsoidal particles, however, the dipole moment of the zeta potential does not affect the translational mobility, while the rotational mobility depends only on the dipole moment. The mobility of the deformed sphere with either a thick or a thin double layer is also derived.  相似文献   

12.
Electrophoretic field gradient focusing has been used to separate the two oxidation states of myoglobin (Mb), and to separate Mb from bromophenol blue (BPB). Polyacrylamide and Sephadex were shown to be suitable packing materials whilst silica led to band broadening with Mb. BPB and Mb could be simultaneously focused apart using either a fixed 21-electrode setup or a dynamic 6-electrode setup. Using a dynamic three-electrode setup either analyte could be focused but not both simultaneously. It was shown that a higher ionic strength buffer in the separation channel compared to the coolant channel enhanced focusing between electrodes due to a conductivity gradient. Different running buffers were investigated and it was found that using a pH 8.6 buffer containing N,N,N-tris(hydroxymethyl)aminomethane (Tris) and phosphate ions the oxidation states of Mb could be separated but the separation of Mb from BPB was not as good as would be hoped for. Using a pH 8.6 buffer containing Tris, N-2-hydroxyethylpiperazine-N'-3-propanesulphonate and chloride ions as running buffer, BPB and Mb could be well separated but the two oxidation states of Mb merged.  相似文献   

13.
Boundary effects can have a profound influence on the electrophoretic behavior of a charged entity, in particular, when the entity is nonspherical and its surface conditions are dependent upon the nearby environment. In this study, the electrophoresis of a spheroid along the axis of an uncharged cylindrical pore is analyzed for the case where the electrical potential is low and the applied electric field is weak. We consider the case where the surface of a particle contains dissociable acidic and basic functional groups, which simulate biological colloids and entities covered by an artificial membrane. This leads to a mixed-type boundary value problem, which extends the conventional constant-surface-potential and constant-surface-charge-density models to a more general case. The effects of the particle aspect ratio, the relative magnitudes of particle and pore, the thickness of the double layer surrounding a particle, and the pH of the liquid phase on the electrophoretic mobility of a particle are investigated. Several interesting results are observed; for example, if the volume of a particle is fixed, its mobility may have a local maximum as the relative magnitudes of its two axes vary.  相似文献   

14.
The molecular mechanisms of aqueous solvent penetration into a flat nanopore with hydrophobic structureless walls containing a Na+Cl? ion pair with nonfixed distance between ions is studied by computer simulations. A detailed many-body polycenter model of intermolecular interactions calibrated with respect to experimental data for the free energy of attachment of water vapor molecules and quantum-chemical calculations in clusters is used. The ion pair hydration results in its decomposition. Drawing the molecules into the gap between ions makes easier penetration of solvent and filling of the nanopore with electrolyte. The ion-pair dissociation is accompanied by dramatic changes in the chemical potential of molecules and electric properties of the whole system. The thermodynamic characteristics of decomposition are stable as regards variations in the pore width. The post-decomposition electric polarizability demonstrates strong anisotropy associated with the nanopore flatness.  相似文献   

15.
The electrophoresis of a finite cylindrical particle positioned eccentrically along the axis of a long cylindrical pore is modeled under the conditions of low surface potential and weak applied electric field. The influences of the eccentricity of a particle and its linear size, the radius of the pore, and the thickness of the electrical double layer on the electrophoretic mobility of the particle are investigated. Some interesting results are observed. For instance, for the case of a positively charged particle placed in an uncharged pore, if the double layer is thin and the particle is short, the mobility has a local minimum as the eccentricity varies. Also, for a short particle the mobility at a thinner double layer can be smaller than that at a thicker double layer, which has never been reported for the case of constant surface potential. In general, the mobility increases with the increase in the eccentricity, and this effect is pronounced when the size of a particle is large and/or the radius of a pore is small.  相似文献   

16.
The electrophoretic motion of a spherical nanoparticle, subject to an axial electric field in a nanotube filled with an electrolyte solution, has been investigated using a continuum theory, which consists of the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the Stokes equation for the hydrodynamic field. In particular, the effects of nonuniform surface charge distributions around the nanoparticle on its axial electrophoretic motion are examined with changes in the bulk electrolyte concentration and the surface charge of the tube's wall. A particle with a nonuniform charge distribution is shown to induce a corresponding complex ionic concentration field, which in turn influences the electric field and the fluid motion surrounding the particle and thus its electrophoretic velocity. As a result, contrary to the relatively simple dynamics of a particle with a uniform surface charge, dominated by the irradiating electrostatic force, that with a nonuniform surface charge distribution shows various intriguing behaviors due to the additional interplay of the nonuniform electro-osmotic effects.  相似文献   

17.
The electrophoresis of a spherical particle along the axis of a cylindrical pore filled with a Carreau fluid is investigated theoretically. In addition to the boundary effect due to the presence of the pore, the influences of the thickness of double layer surrounding a particle and the properties of the fluid on the electrophoretic behavior of the particle are also examined. We show that, in general, the presence of the pore has the effect of retarding the movement of a particle. On the other hand, the shear-thinning nature of the liquid phase is advantageous to its movement. For both Newtonian and Carreau fluids, the mobility of a particle increases monotonically with the decrease in the thickness of double layer, but the mobility is more sensitive to the variation of the thickness of double layer in the latter. The mobility of a particle in a Carreau fluid is larger than that in the corresponding Newtonian fluid, and the difference between the two increases with the decrease in double-layer thickness; in addition, depending upon the values of the parameters assumed, the percentage difference can be in the order of 50%.  相似文献   

18.
The boundary effect on the drag on two identical, nonuniformly structured flocs moving along the axis of a cylindrical tube filled with a Newtonian fluid is investigated at a small to medium larger Reynolds number. A two-layer model is adopted to simulate various possible structures of a floc, and the flow field inside is described by Darcy–Brinkman model. The results of numerical simulation reveal that a convective flow is present in the rear region of a floc when Reynolds number is on the order of 40. The presence of the tube wall and/or the porous structure of a floc has the effect of reducing that convective flow. For a fixed level of the volume-average permeability of a floc, the influence of the tube wall on the drag depends upon floc structure; the influence on a nonuniformly structured floc is more significant than that on a uniformly structured floc. The more nonuniform the floc structure, the more appreciable the deviation of the drag coefficient–Reynolds number curve from a Stokes’-law-like relation becomes. The smaller the volume-average permeability of a floc and/or the smaller the separation distance between the two flocs, the greater is the deviation, but the presence of the tube wall has the effect of reducing that deviation.  相似文献   

19.
The self-assembly of linear ABC triblock copolymers under cylindrical confinements is investigated in two-dimensional space using the real-space self-consistent field theory. The effects of confinement degrees and preferential strengths on the triblock copolymer phase behaviors with special polymer parameters are first considered. On one hand, different confinement degrees cause different phase behaviors in nanopores with the neutral surfaces. Moreover, the strongly preferential surface fields can surpass the confinement degrees and volume fractions in determing the confined phase behaviors. On the other hand, in contrast, confined morphologies are more sensitive to the variations in the A-preferential surface field strength. Subsequently, the incompatibility degrees between different blocks are systematically varied under cylindrical nanopore confinements. Under cylindrical nanopore confinements, the morphologies are very sensitive to the variations in the incompatibility degrees. Meanwhile, nanopore confinements can affect order-disorder and order-order transition points in the bulk. The corresponding free, internal, and entropic energies as well as the order parameters are also quantificationally examined to deeply investigate the confined phase mechanisms, and a number of morphological transitions are confirmed to be of first-order. These findings may guide the design of novel nanostructures based on triblock copolymers by introducing confinements.  相似文献   

20.
The influence of a charged boundary on the electrophoretic behavior of a particle is investigated by considering the electrophoresis of a nonconducting ellipsoid along the axis of a cylindrical pore at the level of the linear Poisson-Boltzmann equation ignoring the polarization effect. The problem considered simulates the electrophoresis conducted in a narrow space such as capillary electrophoresis and electrophoresis through a porous medium. Here, because the effect of electroosmotic flow can be important the electrophoretic behavior is much more complicated than that for the case where a boundary is uncharged. The influences of the thickness of double layer, the aspect ratio of an ellipsoid, the relative radius of a pore, and the charge conditions on the ellipsoid and pore surfaces on the mobility of the ellipsoid are discussed. Several interesting but nonintuitive electrophoretic behaviors are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号