首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We view DHR superselection sectors with finite statistics as Quantum Field Theory analogs of elliptic operators where KMS functionals play the role of the trace composed with the heat kernel regularization. We extend our local holomorphic dimension formula and prove an analogue of the index theorem in the Quantum Field Theory context. The analytic index is the Jones index, more precisely the minimal dimension, and, on a 4-dimensional spacetime, the DHR theorem gives the integrality of the index. We introduce the notion of holomorphic dimension; the geometric dimension is then defined as the part of the holomorphic dimension which is symmetric under charge conjugation. We apply the AHKT theory of chemical potential and we extend it to the low dimensional case, by using conformal field theory. Concerning Quantum Field Theory on a curved spacetime, the geometry of the manifold enters in the expression for the dimension. If a quantum black hole is described by a spacetime with bifurcate Killing horizon and sectors are localizable on the horizon, the variation of logarithm of the geometric dimension is proportional to the incremental free energy, due to the addition of the charge, and to the inverse temperature, hence to the inverse of the surface gravity in the Hartle–Hawking KMS state. For this analysis we consider a conformal net obtained by restricting the field to the horizon (“holography”). Compared with our previous work on Rindler spacetime, this result differs inasmuch as it concerns true black hole spacetimes, like the Schwarzschild–Kruskal manifold, and pertains to the entropy of the black hole itself, rather than of the outside system. An outlook concerns a possible relation with supersymmetry and noncommutative geometry. Received: 8 March 2000 / Accepted: 17 April 2001  相似文献   

2.
Considering the unfixed background space-time and self-gravitational interaction, we view the Hawking radiation of a stationary Kerr–Newman black hole by Hamilton–Jacobi method. Meanwhile, extending this work to non-stationary black holes, we attempt to investigate the Hawking radiation of the non-stationary Kerr–Newman black hole. Both of the results show the tunneling probabilities are related to the change of Bekenstein- Hawking entropy and the radiation spectrums deviate from the purely thermal one, which is in accordance with the known result.  相似文献   

3.
Quantum mechanics in the vicinity of black holes is a fascinating field of theoretical physics. It involves both general relativity and particle physics, opening new eras to establish the principles of unified theories. In this article, we show that quantum bound states with no classical equivalent – as can easily be seen at the dominant monopolar order – should be formed around black holes for massive scalar particles. We qualitatively investigate some important physical consequences, in particular for the Hawking evaporation mechanism and the associated greybody factors. PACS 04.62.+v; 04.70.Dy; 04.70-s  相似文献   

4.
Black hole entropy appears to be “universal”—many independent calculations, involving models with very different microscopic degrees of freedom, all yield the same density of states. I discuss the proposal that this universality comes from the behavior of the underlying symmetries of the classical theory. To impose the condition that a black hole be present, we must partially break the classical symmetries of general relativity, and the resulting Goldstone-boson-like degrees of freedom may account for the Bekenstein–Hawking entropy. In particular, I demonstrate that the imposition of a “stretched horizon” constraint modifies the algebra of symmetries at the horizon, allowing the use of standard conformal field theory techniques to determine the asymptotic density of states. The results reproduce the Bekenstein–Hawking entropy without any need for detailed assumptions about the microscopic theory.  相似文献   

5.
We study Hawking radiation in a new class of black hole solutions in Einstein–Gauss–Bonnet theory. The black hole has been argued to have vanishing mass and entropy, but finite Hawking temperature. To check if it really emits radiation, we analyze Hawking radiation using the original method of quantization of a scalar field in the black hole background and with the quantum tunneling method, and confirm that it emits radiation at the Hawking temperature. A general formula is derived for the Hawking temperature and backreaction in the tunneling approach. Physical implications of these results are discussed.  相似文献   

6.
We investigate the thermodynamic properties of 5D static and spherically symmetric black holes in (i) Einstein–Maxwell–Gauss–Bonnet theory, (ii) Einstein–Maxwell–Gauss–Bonnet theory with negative cosmological constant, and in (iii) Einstein–Yang–Mills–Gauss–Bonnet theory. To formulate the thermodynamics of these black holes we use the Bekenstein–Hawking entropy relation and, alternatively, a modified entropy formula which follows from the first law of thermodynamics of black holes. The results of both approaches are not equivalent. Using the formalism of geometrothermodynamics, we introduce in the manifold of equilibrium states a Legendre invariant metric for each black hole and for each thermodynamic approach, and show that the thermodynamic curvature diverges at those points where the temperature vanishes and the heat capacity diverges.  相似文献   

7.
Kerner and Mann’s recent research shows that the Hawking temperature and tunneling rate can be obtained by the fermion tunneling method from the Rindler space-time and a general non-rotating black hole. In this paper, considering the tunneling particles with spin 1/2 and taking into account the particle’s self-gravitation in the dynamical background space-time, we further improve Kerner and Man’s fermion tunneling method to investigate Hawking radiation via tunneling from a non-static black hole with the internal global monopole. The result shows that the tunneling rate of the non-static black hole is related to the integral of the changing horizon besides the change of Bekenstein–Hawking entropy, which is different from the stationary cases. It also essentially implies that the unitary is violated for the reason that the black hole is non-stationary and cannot be treated as an isolated system.  相似文献   

8.
The goal of the paper is to prove a perturbative result, concerning the uniqueness of Kerr solutions, a result which we believe will be useful in the proof of their nonlinear stability. Following the program started in Ionescu and Klainerman (Invent. Math. 175:35–102, 2009), we attempt to remove the analyticity assumption in the the well known Hawking-Carter-Robinson uniqueness result for regular stationary vacuum black holes. Unlike (Ionescu and Klainerman in Invent. Math. 175:35–102, 2009), which was based on a tensorial characterization of the Kerr solutions, due to Mars (Class. Quant. Grav. 16:2507–2523, 1999), we rely here on Hawking’s original strategy, which is to reduce the case of general stationary space-times to that of stationary and axi-symmetric spacetimes for which the Carter-Robinson uniqueness result holds. In this reduction Hawking had to appeal to analyticity. Using a variant of the geometric Carleman estimates developed in Ionescu and Klainerman (Invent. Math. 175:35–102, 2009), in this paper we show how to bypass analyticity in the case when the stationary vacuum space-time is a small perturbation of a given Kerr solution. Our perturbation assumption is expressed as a uniform smallness condition on the Mars-Simon tensor. The starting point of our proof is the new local rigidity theorem established in Alexakis et al. (Hawking’s local rigidity theorem without analyticity. , 2009).  相似文献   

9.
Treating macro-black hole as quantum states, and using Brown–York's quasi-local gravitational energy definition and Heisenberg uncertainty principle, the GHS black hole's quantum horizon is constructed. The Hawking temperature is computed naturally, and the entropy can also be figured out without introducing the cutoff factor h. The Φ-field mode number is predicted too. The result is consistent with that of the Schwarzschild and R-N black hole.  相似文献   

10.
Considering the unfixed background space-time and self-gravitational interaction, we review the Hawking radiation of the Kerr–Newman black hole by Hamilton–Jacobi method. The result shows the tunneling probability is related to the change of Bekenstein–Hawking entropy and the radiation spectrum deviates from the precisely thermal one, which is in accordance with Parikh and Wilczek’s result and gives another method to study the Hawking radiation of the black hole.  相似文献   

11.
To any periodic and full C *-dynamical system , an invertible operator s acting on the Banach space of trace functionals of the fixed point algebra is canonically associated. KMS states correspond to positive eigenvectors of s. A Perron–Frobenius type theorem asserts the existence of KMS states at inverse temperatures equals the logarithms of the inner and outer spectral radii of s (extremal KMS states). Examples arising from subshifts in symbolic dynamics, self-similar sets in fractal geometry and noncommutative metric spaces are discussed. Certain subshifts are naturally associated to the system, and criteria for the equality of their topological entropy and inverse temperatures of extremal KMS states are given. Unital completely positive maps implemented by partitions of unity {x j } of grade 1 are considered, resembling the “canonical endomorphism” of the Cuntz algebras. The relationship between the Voiculescu topological entropy of and the topological entropy of the associated subshift is studied. Examples where the equality holds are discussed among Matsumoto algebras associated to non finite type subshifts. In the general case is bounded by the sum of the entropy of the subshift and a suitable entropic quantity of the homogeneous subalgebra. Both summands are necessary. The measure-theoretic entropy of , in the sense of Connes–Narnhofer–Thirring, is compared to the classical measure-theoretic entropy of the subshift. A noncommutative analogue of the classical variational principle for the entropy is obtained for the “canonical endomorphism” of certain Matsumoto algebras. More generally, a necessary condition is discussed. In the case of Cuntz–Krieger algebras an explicit construction of the state with maximal entropy from the unique KMS state is done. Received: 1 February 2000 / Accepted: 23 February 2000  相似文献   

12.
Hawking radiation of particles with electric and magnetic charges from the Einstein–Maxwell-Dilaton–Axion black hole is derived via the anomaly cancellation method, initiated by Robinson and Wilczek and elaborated by Banerjee and Kulkarni recently. We reconstruct the electromagnetic field tensor to redefine the gauge potential and equivalent charge corresponding to the source with electric and magnetic charges. We only adopt the covariant gauge and gravitational anomalies to discuss the near-horizon quantum anomaly in the dragging coordinate frame. Our result shows that Hawking radiation in this case also can be reproduced from the viewpoint of anomaly.  相似文献   

13.
We find the existence of a quantum thermal effect, “Hawking absorption.” near the inner horizon of the Kerr–Newman black hole. Redefining the entropy, temperature, angular velocity, and electric potential of the black hole, we give a new formulation of the Bekenstein–Smarr formula. The redefined entropy vanishes for absolute zero temperature of the black hole and hence it is interpreted as the Planck absolute entropy of the KN black hole.  相似文献   

14.
We apply the non-equilibrium fluctuation theorems developed in the statistical physics to the thermodynamics of black hole horizons. In particular, we consider a scalar field in a black hole background. The system of the scalar field behaves stochastically due to the absorption of energy into the black hole and emission of the Hawking radiation from the black hole horizon. We derive the stochastic equations, i.e. Langevin and Fokker-Planck equations for a scalar field in a black hole background in the ?→0 limit with the Hawking temperature ?κ/2π fixed. We consider two cases, one confined in a box with a black hole at the center and the other in contact with a heat bath with temperature different from the Hawking temperature. In the first case, the system eventually becomes equilibrium with the Hawking temperature while in the second case there is an energy flow between the black hole and the heat bath. Applying the fluctuation theorems to these cases, we derive the generalized second law of black hole thermodynamics. In the present paper, we treat the black hole as a constant background geometry.Since the paper is also aimed to connect two different areas of physics, non-equilibrium physics and black holes physics, we include pedagogical reviews on the stochastic approaches to the non-equilibrium fluctuation theorems and some basics of black holes physics.  相似文献   

15.
We investigate the Hawking radiation and greybody factor for a scalar field on the background of the black holes in the theory of the non-minimal R β F 2-coupled electromagnetic fields to gravity. For different asymptotic structures caused by the real power number β, we find that the influences of the real power number on the Hawking radiation and greybody factor are different. We also show that the different coupling constant also affects the Hawking radiation and greybody factor.  相似文献   

16.
Taking energy conservation and angular momentum conservation into account, the tunneling radiation characteristics of stationary axisymmetric Sen black hole is studied in this paper with the quantum tunneling method and the results show that the tunneling rate of particle at the event horizon of the black hole is relevant to Bekenstein–Hawking entropy and that the radiation spectrum is not strictly pure thermal. PACS: 04.70_S, 97.60.Lf  相似文献   

17.
The analytic expression obtained in the preceding project for the massless conformal scalar propagator in the Hartle–Hawking vacuum state for small values of the Schwarzschild radial coordinate above r = 2M is analytically extended into the interior of the Schwarzschild black hole. The result of the analytical extension coincides with the exact propagator for a small range of values of the Schwarzschild radial coordinate below r = 2M and is an analytic expression which manifestly features its dependence on the background space–time geometry. This feature as well as the absence of any assumptions and prerequisites in the derivation render this Hartle–Hawking scalar propagator in the interior of the Schwarzschild black-hole geometry distinct from previous results. The two propagators obtained in the interior and in the exterior region of the Schwarzschild black hole are matched across the event horizon. The result of that match is a massless conformal scalar propagator in the Hartle–Hawking vacuum state which is shown to describe particle production by the Schwarzschild black hole.
“The future is not what it used to be!” From Alan Parker’s film “Angel Heart”  相似文献   

18.
The Bekenstein–Hawking entropy of certain black holes can be computed microscopically in string theory by mapping the elusive problem of counting microstates of a strongly gravitating black hole to the tractable problem of counting microstates of a weakly coupled D-brane system, which has no event horizon, and indeed comfortably fits on the head of a pin. We show here that, contrary to widely held beliefs, the entropy of spherically symmetric black holes can easily be dwarfed by that of stationary multi-black-hole “molecules” of the same total charge and energy. Thus, the corresponding pin-sized D-brane systems do not even approximately count the microstates of a single black hole, but rather those of a zoo of entropically dominant multicentered configurations. Fourth Award in the 2007 Essay Competition of the Gravity Research Foundation.  相似文献   

19.
Applying the Hamilton–Jacobi method, we investigate the Hawking radiation as tunneling from the non-stationary Vaidya–Bonner black hole by considering the unfixed background space-time and self-gravitational interaction. The result shows the actual radiation spectrum deviates from the purely thermal one and the tunneling rate is related not only to the change of Bekenstein–Hawking entropy but also to the integral to the black hole mass and charge. This implies information loss is possible.  相似文献   

20.
Recent researches on the Hawking radiation of black holes show that the Hawking temperature can be obtained by fermion tunnelling method. In this paper, we extend this method to a 5-D space-time and view the Hawking radiation of the Myers–Perry black hole with two independent angular momenta. As a result, the Hawking temperature is obtained, which is the same as that obtained by other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号