首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemisorption of one monolayer Ag atoms on an ideal Si(1 0 0) surface is studied by using the self-consistent tight-binding linear muffin-tin orbital method. The adsorption energies (Ead) of different sites are calculated. It is found that the adsorbed Ag atoms are more favorable on C site (fourfold site) than on any other sites on Si(1 0 0) surface, the polar covalent bond is formed between Ag atom and surface Si atom, a Ag and Si mixed layer does not exist and does form an abrupt interface at the Ag–Si(1 0 0) interface. This is in agreement with the experiment results. The layer-projected density of states is calculated and compared with that of the clean surface. The charge transfer is also investigated. Comparing with the Au/Si(1 0 0) system, the interaction is weaker between Ag and Si than between Au and Si.  相似文献   

2.
To evaluate the interactions between the atoms of Au, Ag and Cu and clean Si(1 1 1) surface, two types of silicon clusters Si4H7 and Si16H20 together with their metal complexes were studied by using hybrid (U)B3LYP density functional theory method. Optimized geometries and energies on different adsorption sites indicate that: (1) the binding energies at different adsorption sites are large (ranging from 1.2 to 2.6 eV depend on the metal atoms and adsorption sites), suggesting a strong interaction between metal atom and silicon surface; (2) the most favorable adsorption site is the on top (T) site. Mulliken population analysis indicated that in the system of on top (T) site, a covalent bond is formed between metal atom and dangling bond of surface Si atom.  相似文献   

3.
The adsorption and dissociation of water monomer and dimer on stepped Co(0001) surface were studied by means of first-principles calculations. Present results indicate that the adsorption strength of water is greatly enhanced by the presence of step, while the activity of water monomer dissociation does not exhibit a noticeable improvement. Nevertheless, water dimer partial dissociation on stepped Co(0001) is more active than on flat Co(0001), and the promotion of oxygen atom on O–H bond cleavage of H2O is more prominent on stepped surface than on flat Co(0001). The findings reveal the importance of low coordinated surface atoms on metallic catalysts and the vital role of surface rippling on water dissociation. Together with previous reports, the activity of water dissociation on cobalt-based catalytic surfaces depends dominantly on O-containing species like oxygen atom, H2O or hydroxyl.  相似文献   

4.
The adsorption properties of CO on experimentally verified stepped Pt3Sn(1 0 2) surface were investigated using quantum mechanical calculations. The two possible terminations of Pt3Sn(1 0 2) were generated and on these terminations all types of possible adsorption sites were determined. The adsorption energies and geometries of the CO molecule for all those sites were calculated. The most favorable sites for adsorption were determined as the short bridge site on the terrace of pure-Pt row of the mixed-atom-ending termination, atop site at the step-edge of the pure row of pure-Pt-ending termination and atop site at the step-edge of the pure-Pt row of the mixed-atom-ending termination. The results were compared with those for similar sites on the flat Pt3Sn(1 1 0) surface considering the fact that Pt3Sn(1 0 2) has terraces with (1 1 0) orientation. The LDOS analysis of bare sites clearly shows that there are significant differences between the electronic properties of Pt atoms at stepped Pt3Sn(1 0 2) surface and the electronic properties of Pt atoms at flat (1 1 0) surface, which leads to changes in the CO bonding energies of these Pt atoms. Adsorption on Pt3Sn(1 0 2) surface is in general stronger compared to that on Pt3Sn(1 1 0) surface. The difference in adsorption strength of similar sites on these two surface terminations is a result of stepped structure of Pt3Sn(1 0 2). The local density of states (LDOS) of the adsorbent Pt and C of adsorbed CO was utilized. The LDOS of the surface metal atoms with CO-adsorbed atop and of their bare state were compared to see the effect of CO chemisorption on the electron density distribution of the corresponding Pt atom. The downward shift in energy peak in the LDOS curves as well as changes in the electron densities of the corresponding energy levels indicate the orbital mixing between CO molecular orbitals and metal d-states. The present study showed that the adsorption strength of the sites has a direct relation with their LDOS profiles.  相似文献   

5.
Adsorption of benzene on oxygen rich and reduced SnO2 surfaces is studied by employing density functional theory calculations, slab model and linear combination of atomic orbitals approach. Rather than preferential adsorption sites, it is found that the adsorption potential energy surface is flat at both surfaces. The bridging oxygen atoms on the stoichiometric surface induce both covalent and ionic bonding leading to weak chemisorptions, whereas bonding on the reduce surface is closer to physisorption. Deformation of the benzene adsorbate due to adsorption is negligible and only small opposite charge transfer is found explaining the differences between the two surfaces.  相似文献   

6.
The adsorption of potassium on the Cu(111) surface in a (2×2) pattern has been simulated with all-electron full-potential density functional calculations. The top site is found to be the preferred adsorption site, with the other highly symmetric adsorption sites being nearly degenerate. The bond length from potassium to the nearest copper atom is computed to be 2.83 ?. Population analysis and density of states indicate that there is no evidence for covalent bonding so that the binding mechanism appears to be a metallic bond. Received 11 April 2001  相似文献   

7.
The adsorption of fluorescein on the Ag(1 1 0) surface has been investigated by the first-principles pseudopotential method. Various adsorption geometries have been calculated and the energetically most favorable structure of fluorescein/Ag(1 1 0) was identified. The fluorescein molecule, in most favorable structure, is on hollow site, and the adsorption energy is 2.34 eV. Here the adsorption sites refer to the positions at the first layer of the substrate where the middle carbon atom of the fluorescein molecule is located. The bonding strength of the fluorescein molecule to the Ag substrate is site selective, being determined by electron transfer to the oxygen atoms of the molecule and local electrostatic attraction between the oxygen atoms and the silver atoms.  相似文献   

8.
Jee-Ching Wang   《Surface science》2003,540(2-3):326-336
We have studied the effects of surface step on molecular propane adsorption using molecular-dynamics simulations and a model stepped surface, Pt(6 5 5). Incidences along the step edge (smooth azimuth) and perpendicular to the step edge with upstairs momentum (upstairs azimuth) and downstairs momentum (downstairs azimuth) are considered. In general, the surface step enhances the initial trapping probability of propane except for the downstairs incidences. The most efficient zone in facilitating adsorption is near the bottom of the surface step on the lower terrace where incident molecules experience stronger attraction and an “additional-layer” effect when crossing the step. The least efficient zone is the top of the surface step on the upper terrace due to an opposite “missing-layer” effect. Surface step also creates steric effects such that more incident molecules along the upstairs azimuth but significantly less molecules along the downstairs azimuth impact the step-bottom zone. The latter steric effect, a shadowing effect, undermines the high trapping efficiency of the step-bottom zone to cause the downstairs incidences to have the lowest trapping probabilities. While the shadowing effect can be enhanced by larger incident angles and lower incident energies, the other steric effect on the upstairs incidences is relatively insensitive to the incident energy. Overall, the influence of surface step on molecular adsorption diminishes at low incident energies and large incident angles because longer contact times and less normal momenta result in high trapping probability across the entire stepped surface.  相似文献   

9.
The adsorption of SH and OH radicals on Ni(111) is treated using an ab initio embedding theory. The Ni(111) surface is modeled as a three-layer, 28-atom cluster with the Ni atoms fixed at bulk lattice sites. The Ni(111) energy surface is very flat for SH adsorption if the H tilt angle is allowed to vary. At both atop and bridge sites, the S---H axis is tilted away from the surface normal by 70°, resulting in the sulfur atom being sp3-hybridized and the adsorption energy being 59 kcal mol−1. For SH at the three-fold site, the S---H axis is normal to the surface, the sulfur is sp-hybridized, and the adsorption energy is 58 kcal mol−1. OH is preferentially adsorbed at the three-fold site. The calculated adsorption energy is 90 kcal mol−1 and the O---H axis is perpendicular to the surface. OH adsorption at the atop and bridge sites is 16 and 5 kcal mol−1 less stable than at the three-fold site, respectively. Atomic H, O and S are preferentially adsorbed at the three-fold site. The calculated adsorption energies are 62, 92 and 87 kcal mol−1, for H, O and S, respectively. The calculated adsorbate---Ni bond distances of 1.86 Å for H, 1.86 Å for O and 2.29 Å for S are in good agreement with experimental data. SH and OH bonding to the surface involves a combination of ionic and covalent contributions and substantial mixing with the Ni 3d orbitals. Dipole-moment calculations indicate strong ionic bonding for the atomic O/Ni system and ionic plus covalent character for the atomic S/Ni interactions. Adsorption of S and O at the three-fold site blocks H adsorption at the nearby surface. Moving H away from the S or O adatom reduces the repulsion. The dissociation of SHad → Sad + Had is calculated to be exothermic by 5 kcal mol−1 and OHad → Oad + Had to be endothermic by 30 kcal mol−1 for infinite separation between S, O and H.  相似文献   

10.
Y. Zou  Th. Schmidt  E. Umbach 《Surface science》2006,600(6):1240-1251
We present a detailed investigation of the interface bonding of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on Ag(1 1 1) and Ag(1 1 0) surfaces by a combination of structural and electronic techniques (SPA-LEED, STM, TPD, UPS, HR-XPS, and NEXAFS) thus obtaining a consistent picture of the adsorption behaviour of PTCDA/Ag in the monolayer regime. The interaction with silver is strong and leads to the formation of new common hybrid orbitals in the monolayer, which are interface states for PTCDA films on Ag, involving at least LUMO, HOMO, and HOMO-1, and the Ag 5s- and 4d-states. This chemisorption is based on a covalent interaction between metal and molecular states, and can unambiguously be distinguished from mere van-der-Waals bonding.  相似文献   

11.
The adsorption of α-sexithiophene (6T) on Cu(1 1 0), Cu(1 1 0)-(2 × 1)O and the mesoscopically patterned Cu-O striped surface have been studied by STM (scanning tunnelling microscopy), XPS (X-ray photoelectron spectroscopy) and NEXAFS (near edge X-ray absorption fine structure). The molecular resolution of the STM allowed to determine the orientation and local order of the molecules in the submonolayer and monolayer regime. It is shown that the 6T molecules align with their long molecular axis along the densely packed copper rows on Cu(1 1 0) and along the Cu-O rows on the Cu(1 1 0)-(2 × 1)O surface. On the striped phase with alternating copper and Cu-O regions the molecules adsorb first on the Cu regions and after complete filling of these regions, on the Cu-O. The orientation is the same on both areas as on the respective pristine surfaces with the only exception that the molecules reorient by 90° if the width of the copper regions is smaller than the molecular length. The NEXAFS measurements allowed for a determination of the adsorption geometry of the molecules: while 6T lies flat on the surface on clean copper, the molecular planes are inclined with an angle as high as 39° with respect to the substrate on (2 × 1)O. For the latter, this inclination angle is 4° higher than in the bulk crystal structure of 6T observed for thicker films to release stress and allow commensurability with the substrate lattice, while for the former it is a result of the aromatic system bonding to the Cu(1 1 0) surface, as confirmed by XPS.  相似文献   

12.
M. Sotto 《Surface science》1992,260(1-3):235-244
A LEED and AES study on oxygen adsorption on Cu(100) and (h11) faces with 5 h 15 has been performed under various adsorption conditions (220 K T 670 K and 1 × 10−8 P 6 × 10−5 Torr of oxygen). The dependence of adsorption temp on the oxygen surface superstructures is pointed out. At least, three oxygen surface states exist on a Cu(100) face. For low temperature exposures to oxygen, under conditions of slow surface diffusion, on the (100) face, two oxygen surface phases exist: a “four spots” and a c(2 × 2) superstructure, both observed even at saturation coverage; on all the stepped faces, a c(2 × 2) appears and no faceting is observed. For high temperature exposures, on the (100) face, two oxygen superstructures are observed, a “four spots” followed by a (2√2 × √2)R45° at higher coverages; on all the stepped faces, surface diffusion is activated and oxygen induced faceting occurs. The appearance of faceting is associated with the onset of the formation of the (2√2 × √2)R45° structure on the (100) face. The oxygen induced faceting and the oxygen surface meshes are reversible with coverages. At saturation coverage, a non-reversible surface transition between the c(2 × 2) and (2√2 × √2)R45° superstructures is observed at 420 ± 20 K. The importance of impurity traces on the surface meshes is emphasized. Oxygen coverage at saturation is independent of the studied faces and adsorption temperature. Faceting occurs at a critical coverage value, whatever the stepped faces and adsorption temperature are. Models of the oxygen structure on the (h10) stepped faces are discussed.  相似文献   

13.
利用密度泛函理论和广义梯度近似研究镍吸附在Al(111)表面。在覆盖率为0.25ML下,分析了Ni吸附在Al(111)表面的面心立方洞位、六角密排洞位、顶位和桥位四个高对称位的原子结构和吸附能。比较不同高对称位的吸附能发现,六角密排洞位的吸附能最大,是5.76 eV,是最稳定的吸附位置。详细讨论了两个最低能量结构-三重洞位的电子结构、功函数、表面偶极距和Ni-Al键的特性。在费米能级附近,Ni-3d和Al-3s,3p轨道产生杂化,形成金属间化合键。由于吸附导致双金属体系表面偶极距和功函数的变化。我们发现:Ni原子与Al(111)表面原子间成建主要是共价键,没有表现出明显的静电荷跃迁,相应的产生非常小的表面偶极距。与面心立方洞位相比,六角密排洞位在费米能级附近产生较低的态密度,在键态附近产生较大的杂化。  相似文献   

14.
黄平  杨春 《物理学报》2011,60(10):106801-106801
采用基于密度泛函理论的平面波超软赝势法,计算了TiO2分子在GaN(0001)表面的吸附成键过程、吸附能量和吸附位置. 计算结果表明不同初始位置的TiO2分子吸附后,Ti在fcc或hcp位置,两个O原子分别与表面两个Ga原子成键,Ga-O化学键表现出共价键特征,化学结合能达到7.932-7.943eV,O-O连线与GaN[1120]方向平行,与实验观测(100)[001] TiO2//(0001)[1120]GaN一致. 通过动力学过程计算分析,TiO2分子吸附过程经历了物理吸附、化学吸附与稳定态形成的过程,稳定吸附结构和优化结果一致. 关键词: GaN(0001)表面 2分子')" href="#">TiO2分子 密度泛函理论 吸附  相似文献   

15.
Spectroscopic studies of the adsorption of dimethyl sulfoxide, (CH3)2S = O, on Pt(111) have shown that the molecule is bound to the surface via the sulfur atom in an inverted pyramid configuration. A comparison of XPS and EELS data for the adsorbed multilayer and monolayer with XPS and infrared data on the complex PtCl2(DMSO)2 is consistent with sulfur bonding. In addition, we detect a considerable increase of the v(S=O) frequency in the DMSO monolayer with decreasing coverage, indicating a coverage dependent heat of adsorption. UPS data show that on adsorption to form a monolayer, the highest occupied molecular orbital of DMSO, presumably the sulfur “lone pair” orbital, shifts to a higher binding energy. These results show a remarkable similarity between DMSO bonding to a metal surface and bonding to a single Pt2+ species.  相似文献   

16.
Density functional and periodic slab model calculations are performed to study adsorption of water on various Cu surfaces, focusing on monomers and dimers at the planar Cu surfaces and monomers at stepped ones. Single water molecules tend to weakly bind to atop positions with the molecular plane basically parallel to the substrate surface on the planar surfaces or the step plane on the stepped surfaces with negligible structural deformation of water. The experimental adsorption energies of water on the (1 1 1) and (1 0 0) surfaces are about twice as large as the theoretical values of monomerically adsorbed water. This phenomenon is demonstrated to be due to formation of water clusters and/or existence of surface defects. It is revealed that the most favorable hexagonal ring superstructure on Cu(1 1 0) is a four-layer structure, not the commonly accepted bi-layer configuration. We found that the adsorption energy of monomeric water correlates linearly with following quantities, respectively: the bond length and the stretching frequency of the Cu-O bond, the coordination number of the surface Cu atom, the surface work function of the clean surface and the 1b1 MO energy shift with respect to the value in the gas phase.  相似文献   

17.
To elucidate the initial growth of metal on oxide surface, we studied adsorption of small nickel clusters, Nin (n = 1-5), on MgO(0 0 1) surface using first-principles method based on density-functional theory. It was found that the preferential adsorption site for an isolated Ni atom is directly above the surface oxygen atom. A strong covalent bond with partial ionic character is formed between the Ni adatom and the surface oxygen atom. Various structures were considered for the Nin isomers and 3D structures were found to be energetically more stable than 2D structures for clusters of more than two atoms. For the 2D clusters, metal-metal bonds prevail over metal-substrate bonds with increasing Ni coverage. The calculated work function and ionization energy were found to vary with Ni coverage which is attributed to the change of the surface dipole moment upon metal adsorption, while the evolution of Schottky barrier height at the initial growth stage is dominated by the adatom-induced gap states.  相似文献   

18.
The purpose of this study is the assessment of the properties of the conductance of deposited atomic chains. Therefore, linear chains of covalent and metallic atoms, i.e. As and Ag, deposited onto monolayer steps of the Si(1 0 0) surface have been considered. The study is based on the extended Hückel theory, used for the evaluation of both the electronic structure and the conductance, and the calculations analyze the binding and adsorption energies of chains of variable length deposited onto SA steps in the light of the similar properties of free standing chains and of chains deposited onto the flat Si(1 0 0) surface. This comparison shows that the stability of the chain depends on its composition, rather than on its length, and increases in the order: free standing, deposited onto SA, deposited onto Si(1 0 0). The central result of the calculations of the conductance is that the dependence of this quantity on the chain length and composition and on the type of substrate parallels the one of the characteristic energies.  相似文献   

19.
本文运用第一性原理研究了单层MoS_2在S位吸附Ag_6团簇的稳定性、能带结构和态密度.结果表明,Ag_6团簇在S位单点位吸附的稳定性强于双点位吸附、三点位吸附;其中吸附体系禁带中产生了2条杂质能级,原因在于Ag原子与S形成共价键下的施主能级与受主能级;Ag_6团簇在单层MoS_2的吸附导致态密度峰值在费米能级处发生劈裂,说明Ag_6团簇的吸附会增强单层MoS_2的光电特性;单层MoS_2的能带结构可以通过表面吸附Ag_6团簇以及金属团簇进行调控;在实际的生产应用中依据不同的金属团簇吸附于单层MoS_2表面得到需要的的半导体器件.  相似文献   

20.
Sukmin Jeong   《Surface science》2003,530(3):155-160
Using a first-principles method, we investigate the adsorption and diffusion of a Si adatom on the H-terminated Si(1 1 1) substrate, which would be useful in understanding the initial stages of Si homoepitaxy using a H surfactant. The adatom substitutes H atom(s) to form a monohydride structure or a dihydride structure. In forming the monohydride structure, the energy barrier for H substitution is absent. The adatom migrates on the surface with alternating its chemical state between monohydride and dihydride. These behaviors of the adatom are quite similar to those on the H/Si(0 0 1)2 × 1 surface, despite the significant difference in the substrate structure between both orientations. The resulting diffusion barrier is 1.30 eV, which is also comparable to that on the H/Si(0 0 1)2 × 1 surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号