首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel fluorescent chiral molecular micelles (FCMMs) were synthesized, characterized, and employed as chiral selectors for enantiomeric recognition of non-fluorescent chiral molecules using steady state fluorescence spectroscopy. The sensitivity of the fluorescence technique allowed for investigation of low concentrations of chiral selector (3.0 × 10−5 M) and analyte (5.0 × 10−6 M) to be used in these studies. The chiral interactions of glucose, tartaric acid, and serine in the presence of FCMMs poly(sodium N-undecanoyl-l-tryptophanate) [poly-l-SUW], poly(sodium N-undecanoyl-l-tyrosinate) [poly-l-SUY], and poly(sodium N-undecanoyl-l-phenylalininate) [poly-SUF] were based on diastereomeric complex formation. Poly-l-SUW had a significant fluorescence emission spectral difference as compared to poly-l-SUY and poly-l-SUF for the enantiomeric recognition of glucose, tartaric acid, and serine. Studies with the hydrophobic molecule α-pinene suggested that poly-l-SUY and poly-l-SUF had better chiral discrimination ability for hydrophobic analytes as compared to hydrophilic analytes. Partial-least-squares regression modeling (PLS-1) was used to correlate changes in the fluorescence emission spectra of poly-l-SUW due to varying enantiomeric compositions of glucose, tartaric acid, and serine for a set of calibration samples. Validation of the calibration regression models was determined by use of a set of independently prepared samples of the same concentration of chiral selector and analyte with varying enantiomeric composition. Prediction ability was evaluated by use of the root-mean-square percent relative error (RMS%RE) and was found to range from 2.04 to 4.06%. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.  相似文献   

3.
Investigations concerning the interactions between the polymeric pair constituted of poly(aspartic acid) (PAS) as a proton-donating polycarboxilic acid and poly(ethylene glycol) (PEG) as a proton-accepting compound are continued from previous studies. The complexation between PAS and PEG has potential use as a matrix for encapsulation of bioactive substances with potential biomedical applications. The interactions that occurred were monitored in dilute solutions by determining the particle size distribution and the zeta potential (ZP) through laser light scattering method; data associated with oscillatory rheology was used as a complementary analysis. The influence of the ratio between the components and the temperature conditions during the complexation process brought additional data concerning the intermolecular links formed through hydrogen bonds.  相似文献   

4.
A variety of carboxylates were recognized using poly(9-aminofluorene) (P9AF) in the HEPES buffer (pH 7.4), and a proposed possible mechanism was proposed as following. The intermolecular hydrogen bonding interactions resulted in electron transfer between P9AF and carboxylates. P9AF was facilely electrosynthesized in boron trifluoride diethyl etherate and could be used as an efficient fluorescent sensing material for the detection of AcO?. On binding to AcO?, fluorescence quenching of P9AF was demonstrated by a maximum 80 % reduction in the fluorescence intensity, while no obvious fluorescence change could be observed in the presence of some other common anions. Some different carboxylates could be recognized at different levels by P9AF. Substituent groups in carboxylates could affect the intermolecular interaction between carboxylates and P9AF. These could be explained by a possible mechanism that hydrogen bonding was the main way of intermolecular interactions between P9AF and carboxylates, which was further confirmed by absorption spectra monitoring and density functional calculations. The significant advantage of this strategy is that it does not require a prequenching procedure and the polymer can be used directly for analyte detection.  相似文献   

5.
The interactions between two synthetic polymers used in biomedical applications, maleic acid-styrene copolymer (MAc-St) and poly(vinylcaprolactam) (PVCL), were investigated in dilute aqueous solution considering the influence of the pH, the added salt and the ratio between the components in the mixture. Hydrogen-bonding interactions between the COOH groups of MAc-St and the C═O groups of PVCL, together with hydrophobic interactions are involved in the formation of the interpolymer complex. The complex is insoluble below pH = 2.85 in aqueous solution, but the addition of NaCl enlarged the pH domain where the precipitation of the complex occurred. When the ratio between the polymers was varied, two maxima of the optical density were obtained: at a 1:1 ratio between the COOH and caprolactam groups, and also at a lower ratio (1:3). Other investigations, like the measurements of the turbidity in situ during mixing, and fluorescence, viscometric and potentiometric measurements were performed in order to understand these interactions. The phase separation of the thermosensitive poly(vinylcaprolactam) in the presence of MAc-St was also studied. The cloud point and the phase transition profile were found to be influenced by the amount of polyacid, as well as by the pH.  相似文献   

6.
The parameters characterizing the absorption, fluorescence and phosphorescence of 10-dodecylisoalloxazine (DIA), 10-octadecylisoalloxazine (OIA) 3-methyl-10-dodecylisoalloxazine (MDIA) embedded into polymeric matrices (polystyrene – PS, polymethacrylate methyl – PMM and poly(vinyl alcohol) – PVA) were studied. It was found that both the polarity of microenvironment and its structure influenced the changes of the spectral properties of the examined amphiflavins.  相似文献   

7.
Novel complexation hydrogel nanospheres of poly(methacrylic acid-grafted-poly(ethylene glycol)) (P(MAA-g-EG)) were prepared by dispersion polymerization to be used for protein delivery applications. Polymerization was conducted in solvents such as deionized water, ethanol/water, sodium hydroxide, hydrochloric acid, and acetic acid solutions. When polymerizing in deionized water we produced nanospheres without agglomeration. Photon correlation spectroscopy studies revealed that the nanospheres possessed a narrow particle size distribution and the size was inversely proportional to the concentration of poly(ethylene glycol) incorporated in the monomer mixture. These nanospheres exhibited pH-sensitivity comparable to that encountered in hydrogel films with the same composition. The composition of the nanospheres was investigated by transmission Fourier transform infrared spectroscopy. The comparison between hydrogel films and nanospheres with the same monomer composition revealed that nanospheres possessed similar spectral characteristics than hydrogel films prepared by the same techniques. These nanospheres could be used for calcitonin release under physiological conditions.  相似文献   

8.
Poly(styrene) is a highly viscous, and cross-linked polymer at room temperature. This makes it ideal to use as a molecular fixer. The polarized fluorescence of a diphenylhexatriene (DPH)-incorporated poly(styrene) film has been studied. The excitation and emission wavelength dependence of the anisotropy of fluorescence of a luminophore-incorporated poly(styrene) film reveals that with decreasing excitation wavelength the anisotropy changes remarkably but is independent of emission wavelength. The investigation estimates an angle of no more than 7.4° between the absorption and the emission transition dipole moment for DPH, suggesting poly(styrene) as a suitable medium to evaluate the mutual orientation of absorption and the emission transition dipole moments at room temperature.  相似文献   

9.
利用R和S对映体与蔗糖间手性作用方式不同而产生的紫外吸收光谱差异分别测定了甲霜灵和布洛芬手性对映体的组成。采用偏最小二乘法(partial Least Squares,PLS)分别建立甲霜灵和布洛芬手性对映体摩尔分数的定量模型,并采用外部检验对模型效果进行评价。甲霜灵-蔗糖体系中精甲霜灵摩尔分数的定量模型校正集的决定系数R2为99.98%,标准偏差SEC为0.003;外部检验集的预测值与理论值的相关系数为0.999 8,标准偏差SEP为0.000 4,相对标准偏差RSD为0.05%。布洛芬-蔗糖体系中S-布洛芬摩尔分数的定量模型校正集的决定系数R2为99.82%,标准偏差SEC为0.007;外部检验集的预测值与理论值的相关系数为0.998 1,标准偏差SEP为0.002,相对标准偏差RSD为0.2%;结果表明本方法可以用于两种药物对映体组成的快速测定,对手性药物质量分析与控制有重要的参考价值。  相似文献   

10.
用吡啶作为荧光探针研究了嵌段共聚物PluronicF108胶团形成以及牛血清白蛋白(BSA)对嵌段共聚物胶团形成的影响。研究表明,BSA阻碍嵌段共聚物的胶团形成,BSA与嵌段共聚物疏水链段的疏水相互作用是其阻碍嵌段共聚物胶团形成的主要原因。  相似文献   

11.
应用静态荧光光谱研究了嵌段共聚物PluronicP103对牛血清白蛋白(BSA)荧光光谱的猝灭。研究表明,PluronicP103对BSA的荧光有猝灭作用,动态猝灭是引起BSA荧光猝灭的主要原因。发现嵌段共聚物PluronicP103在水溶液中的蔟集状态影响其与BSA的相互作用,以胶团形式存在的PluronicP103对BSA的猝灭作用更强。  相似文献   

12.
聚对苯二甲酸丁二醇酯(PBT)/聚(对苯二甲酸丁二醇酯-e-己内酯)(PBT-PCl)是一个新制备的具有分子间排斥相互作用的A/AxB1?x型两元结晶共混体系. 根据两元平均场模型,报道对苯二甲酸丁二醇酯(BT)与"-己内酯(CL)结构单元的相互作用参数为0.305. DSC研究发现,此共混物呈现了与典型的共聚物/均聚物共混物不同的结晶特征. PBT-PCL影响PBT链的活动力和晶片堆积;同时PBT-PCL的结晶受到先期结晶的PBT晶粒的阻滞. 尽管拥有相同的BT单元,共混的两组分在组成变化范围内仍没有形  相似文献   

13.
The bee venom, used in treatment of inflammatory and articular diseases, is a complex mixture of peptides and enzymes and the presence of tryptophan allows the investigation by fluorescence techniques. Steady state and time-resolved fluorescence spectroscopy were used to study the interaction between bee venom extracted from Apis mellifera and three micro heterogeneous systems: sodium dodecylsulphate (SDS) micelles, sodium dodecylsulphate-poly(ethylene oxide) (SDS-PEO) aggregates, and the polymeric micelles LUTROL® F127, formed by poly(ethylene oxide)-poly(propylene oxide)- poly(ethylene oxide). Fluorescence parameters in buffer solution were typical of peptides containing tryptophan exposed to the aqueous medium, and they gradually changed upon the addition of surfactant and polymeric micelles, demonstrating the interaction of the peptides with the micro heterogeneous systems. Quenching experiments were carried out using the N-alkylpyridinium ions (ethyl, hexyl, and dodecyl) as quenchers. In buffer solution the quenching has low efficiency and is independent of the alkyl chain length of the quencher. In the presence of the micro heterogeneous systems the extent of static and dynamic quenching enhanced, showing that both fluorophore and quenchers reside in the microvolume of the aggregates. The more hydrophobic quencher (dodecyl pyridinium ion) provides higher values for K SV and dynamic quenching constants, and SDS-PEO aggregates are most efficient to promote interaction between peptides and alkyl pyridinium ions. The results proved that bee venon interacts with drug delivery micelles of the copolymer LUTROL® F127.  相似文献   

14.
Optoelectronic properties of the oxadiazole-functionalized iridium complex-doped polymer light-emitting devices (PLEDs) are demonstrated with two different polymeric host matrices at the dopant concentrations 1-8%. The devices using a blend of poly(9,9-dioctylttuorene)(PFO) and 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) as a host matrix exhibited a maximum luminance efficiency of 11.3 cd/A at 17. 6 mA/cm^2. In contrast, the devices using a blend of poly(N-vinylcarbazole) (PVK) and PBD as a host matrix reveal only a peak luminance efficiency of 6.Scd/A at 4.1 mA/cm^2. The significantly enhanced electrophosphorescent emissions are observed in the devices with the PFO-PBD blend as a host matrix. This indicates that choice of polymers in the host matrices is crucial to achieve highly efficient phosphorescent dye-doped PLEDs.  相似文献   

15.
采用红外光谱、热重分析、紫外光谱和荧光光谱对侧链含查尔酮基团的聚(4-甲基丙烯酰氧基-4'-二甲氨基查尔酮)(PMADMAC)和聚(4-丙烯酰氧基查尔酮)(PAC)的光交联特性进行了研究。随着光照时间的增加,PMADMAC和PAC聚合物光致环加成反应迅速进行,波长短的紫外线更易使得聚合物发生[2+2]环加成反应。与溶液状态相比,固体薄膜状态下的光交联反应速率较慢。PMADMAC聚合物更容易发生光致环加成反应,其光交联速率要比PAC聚合物快,环加成反应也更彻底。采用荧光光谱研究了聚合物的发光特性,发现PAC聚合物无荧光,而PMADMAC聚合物具有溶剂极性敏感的荧光特性。在PMADMAC聚合物的稀溶液中,随着365 nm紫外光照时间的增加,荧光强度迅速降低,其荧光特征波长在紫外光照射后发生蓝移。 PMADMAC和PAC聚合物的热稳定性较好,光交联后形成热不稳定的环丁烷结构,其热稳定性有所降低。  相似文献   

16.
Chirally asymmetric states, chemical oscillations, propagating chemical waves, and spatial patterns, are examples of far-from-equilibrium self-organization. We have found that the crystal growth front of 1,1(')-binaphthyl shows many of the characteristics of an open system in which chiral symmetry breaking has occurred. From its supercooled molten phase, 1,1(')-binaphthyl crystallizes as a conglomerate of R and S crystals when the temperature is above 145 degrees C. In addition, 1,1(')-binaphthyl in its molten phase is always racemic due to its high racemization rate. Under appropriate conditions, bimodal probability distribution of enantiomeric excess (ee) with maxima around 60% was observed. The ee was mass independent, indicating that the growth front maintains a constant ee. A kinetic model that theoretically analyzes the chiral symmetry breaking transition in the growth front of a conglomerate crystal phase was formulated. Computer simulation of the model reproduced not only the average but also the large variation of the ee observed in crystallization experiments.  相似文献   

17.
Abstract

Decabromodiphenylether (DBDE) is a brominated flame retardant which belongs to the group of polybromodiphenylethers (PBDEs) often used as a fire resistant additive in various well known polymeric systems like polystyrene, poly(acrylonitrile-butadiene-styrene) (ABS), polypropylene, etc. This compound can be considered as a persistent organic pollutant and presents certain risks for the environment owing to the fact that it is bioaccumulable and not biodegradable. A detailed investigation, described here, was carried out on the effect of ultraviolet/visible radiation on DBDE in ABS with the aim to study the photolytic reactions of this molecule in the solid state, in order to improve the economic and ecological treatment of brominated plastic waste from waste electrical and electronic equipment (WEEE). This study presents new aspects of the photochemical degradation of DBDE/ABS systems in the solid state. The photodegradation of DBDE in ABS was followed by Fourier transform infrared spectroscopy (FTIR) as well as by thermogravimetrical analysis (TGA). Good agreement was obtained for the results of both analytical methods in terms of the overall photolysis of DBDE.  相似文献   

18.
Several composites of poly (L-lactic acid) (PLLA) with poly (glycolic acid) (PGA) fibers were prepared. The isothermal crystallization kinetics and melting behavior of PLLA and all of the composites were characterized by using differential scanning calorimetry. The experimental data were processed by using the Avrami equation. The relative parameters, such as the Avrami exponent and half-time crystallization, revealed that PGA fibers had positive effects on the crystallization of PLLA, but these effects had only a minimal dependence on the PGA fiber content. Moreover, at low isothermal crystallization temperatures (85°C~110°C), recrystallization during the heating scan was observed, which could lower the melting point of the samples to a certain extent.  相似文献   

19.
A series of pH-sensitive hydrogel beads were prepared composed of poly(vinyl alcohol) (PVA) and sodium carboxymethylcellulose (CMC) by using Fe3+ crosslinking and freeze-thawing (FT) cycle techniques. The mixed solution of CMC and PVA was firstly crosslinked with Fe3+ to form beads and then subjected to freezing-thawing cycles for further crosslinking. The formation of hydrogel was confirmed by Fourier transform infrared spectroscopy (FTIR). The gelling rate in ferric solution and the swelling and pH-senstive properties of the hydrogel beads were investigated. The encapsulation efficiency and in-vitro release properties of beads were also evaluated using Bovine serum albumin as model drug. The pH sensitivity and the release rate increased with increasing CMC content. These results suggest that the PVA/CMC hgdrogel beads should be useful as pH-sensitive drug delivery systems for bioactive agents.  相似文献   

20.
Blending of polymeric materials is an effective way to obtain materials with specific properties, since the properties of these multiphase polymeric materials are not only affected by the properties of the component polymers but also by the morphology formed. The research described here was focused on investigation of the morphology of polymer blends of poly lactic acid (PLA) and poly methyl methacrylate (PMMA) and the PLA/PMMA blends containing various amounts of graphene nano plates, (GNP). In this work, the blends were prepared by solution casting and the morphologies of these nano filled polymer blends were studied. By adding graphene nano plates into the PLA/PMMA blends, the morphology changed for all compositions. It was very interesting to note that the GNP were found to be preferentially located in one of the polymer phases, different for the different loadings, and its location determined the final morphology of the PLA/PMMA blends. The morphology of the blends was observed by SEM and the composition-morphology dependence responses were investigated using a Fourier transform infra-red (FTIR) spectroscopy technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号