首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
文章基于Fabry-Pérot半导体微腔,阐述了新型元激发--激子极化激元的基本概念和微观描述,讨论了其在光学放大器、光学开关和单光子源方面的潜在应用,概述了对其实现Bose-Einstein凝聚的实验研究,最后对将来的发展做了一个简单的展望.  相似文献   

3.
张用友  金国钧 《物理》2009,38(08):536-544
文章基于Fabry-Pérot半导体微腔,阐述了新型元激发——激子极化激元的基本概念和微观描述,讨论了其在光学放大器、光学开关和单光子源方面的潜在应用,概述了对其实现Bose-Einstein凝聚的实验研究,最后对将来的发展做了一个简单的展望.  相似文献   

4.
The optical response of Mott–Wannier excitons is investigated in semiconductor superlattices and microcavities. p-Polarized light is considered to calculate the reflectivity Rpand dispersion relation of the collective normal modes in superlattices accounting for extrinsic Morse potential wells, andRp in microcavities. Results of Rpexhibit well-defined peaks of the exciton bound states in the Morse potentials for both transverse and longitudinal modes. Comparisons ofRp with experimental reflectivity data of light for semiconductor microcavities exhibit good qualitative agreement as well as Rabi splitting.  相似文献   

5.
6.
In a pump-probe experiment, we have been able to control, with phase-locked probe pulses, the ultrafast nonlinear optical emission of a semiconductor microcavity, arising from polariton parametric amplification. This evidences the coherence of the polariton population near k=0, even for delays much longer than the pulse width. The control of a large population at k=0 is possible although the probe pulses are much weaker than the large polarization they control. With rising pump power the dynamics of the scattering get faster. Just above threshold the parametric scattering process shows unexpected long coherence times, whereas when pump power is risen the contrast decays due to a significant pump reservoir depletion. The weak pulses at normal incidence control the whole angular emission pattern of the microcavity.  相似文献   

7.
Linear and nonlinear light propagation in single and multiple quantum wells and in semiconductor microresonators are studied on the basis of Maxwell’s equations. The treatment includes radiative broadening of quantum-confined excitons, radiative coupling between quantum wells as well as coupling of quantum wells to the cavity field of a microresonator for steady state or ultrashort pulse excitation. The dynamical evolution of the coherent quantum-well polarization under the influence of many-body effects is studied within a microscopic model. The theory is used to investigate the influence of exciton saturation and dephasing on pulse propagation and excitonic normal-mode coupling.  相似文献   

8.
The coherent dynamics of magnetoexcitons in semiconductor nanorings following pulsed optical excitation is studied. The calculated temporal evolution of the excitonic dipole moment may be understood as a superposition of the relative motion of electrons and holes and a global circular motion associated with the magnetic-field splitting of these states. This dynamics of the electron-hole pairs can be generated either by local optical excitation of an ordered ring or, alternatively, by homogeneous excitation of rings with broken rotational symmetry due to disorder or band tilting. Received 27 September 2000  相似文献   

9.
An investigation was made of the self-induced transparency effect in the semiconductor's exciton region using ultrashort frequency-tunable light pulses and an ultrafast streak camera.  相似文献   

10.
11.
12.
We describe experiments on a semiconductor microcavity which provide the first demonstration of motional narrowing in semiconductor inter-subband optical transitions. Significant narrowing occurs because of the small mass of the polaritons in a microcavity. The demonstration is made possible by the control provided in a microcavity of the mixing between photon and exciton states, and hence the dispersion of the polariton.  相似文献   

13.
New effects of self-organization and polarization pattern formation in semiconductor microcavities, operating in the nonlinear regime, are predicted and theoretically analyzed. We show that a spatially inhomogeneous elliptically polarized optical cw pump leads to the formation of a strongly circularly polarized ring in real space. This effect is due to the polarization multistability of cavity polaritons which was recently predicted. The possible switching between different stable configurations allows the realization of a localized spin memory element, suitable for an optical data storage device.  相似文献   

14.
The studies of spin phenomena in semiconductor low-dimensional systems have grown into the rapidly developing area of the condensed matter physics: spintronics. The most urgent problems in this area, both fundamental and applied, are the creation of charge carrier spin polarization and its detection, as well as electron spin control by nonmagnetic methods. Here, we present a review of recent achievements in the studies of spin dynamics of electrons, holes, and their complexes in the pump-probe method. The microscopic mechanisms of spin orientation of charge carriers and their complexes by short circularly polarized optical pulses and the formation processes of the spin signals of Faraday and Kerr rotation of the probe pulse polarization plane as well as induced ellipticity are discussed. A special attention is paid to the comparison of theoretical concepts with experimental data obtained on the n-type quantum well and quantum dot array samples.  相似文献   

15.
In semiconductor microcavities, electron-polariton scattering has been proposed as an efficient process that can drive polaritons from the bottleneck region to the ground state, achieving Bose amplification of the optical emission. We present clear experimental observation of this process in a structure that allows control of the electron density and we report substantial enhancement of photoluminescence. We show that this enhancement is more effective at higher temperatures due to the different way that electron scattering processes either broaden or relax polaritons.  相似文献   

16.
17.
The escape time from the lower energy state of the bistable nonlinear driven microcavity oscillator has been obtained analytically by means of the quasi-classical kinetic equation in the basis of quasi-energy states. The dependence of the escape time on the intensity of the external field is in rather good agreement with the results of numerical experiments. Moreover, the numerical dependencies of the escape time on the damping parameter reveal a smooth crossover from exponential to diffusive-like behavior. The text was submitted by the authors in English.  相似文献   

18.
The structure of the photon states and dispersion of cavity polaritons in semiconductor microcavities with two-dimensional optical confinement (photon wires), fabricated from planar Bragg structures with a quantum well in the active layer, are investigated by measuring the angular dependence of the photoluminescence spectra. The size quantization of light due to the wavelength-commensurate lateral dimension of the cavity causes additional photon modes to appear. The dispersion of polaritons in photon wires is found to agree qualitatively with the prediction for wires having an ideal quantum well, for which the spectrum is formed by pairwise interaction between exciton and photon modes of like spatial symmetry. The weak influence of the exciton symmetry-breaking random potential in the quantum well indicates a mechanism of polariton production through light-induced collective exciton states. This phenomenon is possible because the light wavelength is large in comparison with the exciton radius and the dephasing time of the collective exciton state is long. Zh. éksp. Teor. Fiz. 114, 1329–1345 (October 1998)  相似文献   

19.
We observe a room-temperature low-threshold transition to a coherent polariton state in bulk GaN microcavities in the strong-coupling regime. Nonresonant pulsed optical pumping produces rapid thermalization and yields a clear emission threshold of 1 mW, corresponding to an absorbed energy density of 29 microJ cm-2, 1 order of magnitude smaller than the best optically pumped (In,Ga)N quantum-well surface-emitting lasers (VCSELs). Angular and spectrally resolved luminescence show that the polariton emission is beamed in the normal direction with an angular width of +/-5 degrees and spatial size around 5 microm.  相似文献   

20.
Investigations of quantum effects in semiconductor quantum-well microcavities interacting with laser light in the strong-coupling regime are presented. Modifications of quantum fluctuations of the outgoing light are expected due to the non-linearity originating from coherent exciton–exciton scattering. In the strong-coupling regime, this scattering translates into a four-wave mixing interaction between the mixed exciton–photon states, the polaritons. Squeezing and giant amplification of the polariton field and of the outgoing light field fluctuations are predicted. However, polariton–phonon scattering is shown to yield excess noise in the output field, which may destroy the non-classical effects. Experiments demonstrate evidence for giant amplification due to coherent four-wave mixing of polaritons. Noise reduction below the thermal noise level was also observed. To cite this article: E. Giacobino et al., C. R. Physique 3 (2002) 41–52  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号