共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The kinetics of formation and dissociation of the binuclear complex of Be2+ with 3-nitrosalicylatopentaamminecobalt(III) have been investigated in the 20–40 and 25–40 °C ranges (I = 0.3 mol dm –3), respectively. At 25 °C the rate and activation parameters for the formation of the binuclear species are: k
f = 26.9 × 102 dm3mol–1s–1, H
= 104 ± 7kJ mol–1 S
= 91 ± 22JK–1mor–1.The rate constant, activation enthalpy and activation entropy for the acid-catalysed dissociation of the binuclear species are: 1.25 ± 0.08dm3mol –1 at 25 °C, 53 ± 3kJ mol–1 and - 67 ± 9 J K –1 mol–1, respectively. The formation of the binuclear species is chelation controlled while the dechelation is acid catalysed. 相似文献
2.
3.
4.
The extraction of Ga3+ and Al3+ with the liquid cation-exchangers di-n-butyldithiophosphoric acid (DBTPA) and di-(2-ethylhexyl)dithiophosphoric acid (DETPA) in kerosene, in the presence and absence of alcohols and tri-n-butyl phosphate (TBP) has been studied. Both Ga3+ and Al3+ can be extracted in the form of a neutral complex, MA3, but the distribution coefficient of Ga3+ is the higher by about two orders of magnitude, which can be the basis of the solvent extraction separation of gallium and aluminium. The differences can be explained by the interaction between the sulphur donor atoms of the extractants and the d10 electronic shell of Ga3+ as well as by the lower steric hindrance of ligands co-ordinated to Ga3+. 相似文献
5.
Summary The kinetics and mechanism of the system: [FeL(OH)]2–n + 5 CN– [Fe(CN)5(OH)]3– + Ln–, where L=DTPA or HEDTA, have been investigated at pH= 10.5±0.2, I=0.25 M and t=25±0.1 C.As in the reaction of [FeEDTA(OH)]2–, the formation of [Fe(CN)5(OH)]3– through the formation of mixed ligand complex intermediates of the type [FeL(OH)(CN)x]2–n–x, is proposed. The reactions were found to consist of three observable stages. The first involves the formation of [Fe(CN)5(OH)]3–, the second is the conversion of [Fe(CN)5(OH)]3– into [Fe(CN)6]3– and the third is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by oxidation of Ln– The first reaction exhibits a variable order dependence on the concentration of cyanide, ranging from one at high cyanide concentration to three at low concentration. The transition between [FeL(OH)]2–n and [Fe(CN)5(OH)]3– is kinetically controlled by the presence of four cyanide ions around the central iron atom in the rate determining step. The second reaction shows first order dependence on the concentration of [Fe(CN)5(OH)]3– as well as on cyanide, while the third reaction follows overall second order kinetics; first order each in [Fe(CN)6]3– and Ln–, released in the reaction. The reaction rate is highly dependent on hydroxide ion concentration.The reverse reaction between [Fe(CN)5(OH)]3– and Ln– showed an inverse first order dependence on cyanide concentration along with first order dependence each on [Fe(CN)5– (OH)]3– and Ln–. A five step mechanism is proposed for the first stage of the above two systems. 相似文献
6.
Equilibrium studies were carried out by pH-potentiometry on the systems of aluminium(III), gallium(III) and indium(III) with mercaptoacetate (MerAc2?), 3-mercaptopropionate (MerPr2?) and 2-mercaptobenzoate (MerBe2?). It was found that the complex-forming properties of the Al3+ ion towards these mercaptocarboxylic acid ligands differ from those of Ga3+ and Al3+. Under the conditions of the study, Al3+ forms only hydroxo complexes, while Ga3+ and In3+ form relatively stable complexes involving the simultaneous coordination of the carboxylate and the deprotonated mercapto group. In all cases the equilibrium systems can be described without the assumption of polynuclear complexes. The complexes Ga(MerAc)2 and Ga(MerBe)2 show marked stability; this was interpreted in terms of back-coordination and of interaction between the d10 electrons of the Ga3+ ion and the empty d orbitals of the S donor atom. Complexes of composition MLi are not formed in the Ga3+-MerPr2? system; this points to the importan roles of the number of atoms in the chelate ring and the higher stability of the Ga(III)-hydroxo complexes. 相似文献
7.
Summary The kinetics of complex formation between aquachromium(III) ions and L-iso-leucine have been studied spectrophotometrically. Effects of varying the total chromium(III), total amino acid and H+ concentrations, ionic-strength, temperature and % EtOH on the kohs were determined. The results are best accounted for by outer-sphere complexation equilibria involving HL (the amino acid zwitterion) and [Cr(H2O)6]3+/[Cr(H2O)5OH]2+ which precede anations. A rate-equation is established which involves Kos1, Kos2, k1, k2 (the respective outer-sphere complexation and interchange rate constants with [Cr(H2O)6]3+ and [Cr(H2O)5OH]2+), Ka and Kh (the acid-dissociation constants of H2L+HL and [Cr(H2O)6]3+ [Cr(H2O)5OH]2+ pairs). The proposed mechanism is Ia for the path involving hexaaqua- and Id for that involving hydroxopentaaquachromium(III). 相似文献
8.
The kinetics and mechanism of the reaction between nitric oxide and aquapentacyanoferrate(III) were studied in detail. Pentacyanonitrosylferrate (nitroprusside, NP) was produced quantitatively in a pseudo-first-order process. The complex-formation rate constant was found to be 0.252 +/- 0.004 M(-1) s(-1) at 25.5 degrees C, pH 3.0 (HClO(4)), and I = 0.1 M (NaClO(4)), for which the activation parameters are DeltaH++ = 52 +/- 1 kJ mol(-1), DeltaS++ = -82 +/- 4 J K(-1) mol(-1), and DeltaV++ = -13.9 + 0.5 cm(3) mol(-1). These data disagree with earlier studies on complex-formation reactions of aquapentacyanoferrate(III), for which a dissociative interchange (I(d)) mechanism was suggested. The aquapentacyanoferrate(II) ion was detected as a reactive intermediate in the reaction of aquapentacyanoferrate(III) with NO, by using pyrazine and thiocyanate as scavengers for this intermediate. In addition, the reactions of other [Fe(III)(CN)(5)L](n-) complexes (L = NCS(-), py, NO(2)(-), and CN(-)) with NO were studied. These experiments also pointed to the formation of Fe(II) species as intermediates. It is proposed that aquapentacyanoferrate(III) is reduced by NO to the corresponding Fe(II) complex through a rate-determining outer-sphere electron-transfer reaction controlling the overall processes. The Fe(II) complex rapidly reacts with nitrite producing [Fe(II)(CN)(5)NO(2)](4)(-), followed by the fast and irreversible conversion to NP. 相似文献
9.
Anna Katafias Olga Impert Przemysław Kita Grzegorz Wrzeszcz 《Transition Metal Chemistry》2004,29(8):855-860
Oxidation of the trans-[Cr(cyca)(OH)2]+ complex, where cyca = meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, by [Fe(CN)6 ]3- ion in strongly alkaline media, leading to [CrV O(cycaox )]3+ ion, has been studied using electronic and e.p.r. spectroscopy. The kinetics of the CrIII → CrIV transformation have been studied using a large excess of the reductant and OH- ion over the oxidant. The reaction is a second order process: first order in [CrIII] and [FeIII] at constant [OH-]. The second order rate constant is higher than linearly dependent on the OH- concentration. The mechanism of the reaction has been discussed. A relatively inert intermediate chromium(V) species was detected based on characteristic bands in the visible region and the e.p.r. signal at giso = 1.987 for the systems where an excess of oxidant was used. The hyperfine structure of the main e.p.r. signal is consistent with the d1 -electron interactions with four equivalent nitrogen nuclei and [CrV = O(cycaox)]3+ formula, where cycaox = oxidized cyca, can be postulated for the intermediate CrV complex. 相似文献
10.
11.
CrCl3 · 3THF reacts with two equivalents of potassium alkoxometallates K{M(OPr
i
)
x
} [M = Al(A), Ga(B), x = 4; M = Nb(C), x = 6] to give heterobimetallic chloride isopropoxides [Cr{M(OPr
i
)
x
}2Cl(THF)] [M = Al(A – 1), Ga(B – 1), and Nb(C – 1)], in which the replacement of the chloride with an appropriate alkoxometallate (tetraisopropoxoaluminate, tetraisopropoxogallate, or hexaisopropoxoniobate) results in the formation of novel heterotrimetallic derivatives. The 'single pot synthesis of an heterotetrametallic isopropoxide [Cr{Nb(OPr
i
)6}{Al(OPr
i
)4}{Ga(OPr
i
)4}] (7) has been carried out by the sequential addition of (A), (B), and (C) to a benzene suspension of CrCl3 · 3THF. Alcoholysis of [Cr{Al(OPr
i
)4}2{Nb(OPr
i
)6}] (1) and [Cr{Al(OPr
i
)4}2{Ga(OPr
i
)4}] (5) with t-BuOH has also been studied and the derivatives characterized by elemental analyses, molecular weight determinations, spectroscopic [Electronic, i.r., 27Al-n.m.r.] and magnetic susceptibility studies. 相似文献
12.
13.
The kinetics of the oxidation of formate, oxalate, and malonate by |NiIII(L1)|2+ (where HL1 = 15-amino-3-methyl-4,7,10,13-tetraazapentadec-3-en-2-one oxime) were carried out over the regions pH 3.0–5.75, 2.80–5.50, and 2.50–7.58, respectively, at constant ionic strength and temperature 40°C. All the reactions are overall second-order with first-order on both the oxidant and reductant. A general rate law is given as - d/dt|NiIII(L1)2+| = kobs|NiIII(L1)2+| = (kd + nks |R|)|NiIII(L1)2+|, where kd is the auto-decomposition rate constant of the complex, ks is the electron transfer rate constant, n is the stoichiometric factor, and R is either formate, oxalate, or malonate. The reactivity of all the reacting species of the reductants in solution were evaluated choosing suitable pH regions. The reactivity orders are: kHCOOH > k; k > k > k, and k > k < k for the oxidation of formate, oxalate, and malonate, respectively, and these trends were explained considering the effect of hydrogen bonded adduct formation and thermodynamic potential. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 225–230, 1997. 相似文献
14.
The thermodynamics and kinetics of the binding of Ga(III) and In(III) to two hydroxamic acids, C6H5-C(O)N(OH)H (BHA) and C6H5-C(O)N(OH)C6H5 (PBHA), have been investigated in acidic media. Spectrophotometric titrations in the UV region reveal that, with excess metal, only the chelate ML forms, whereas the concentration of the protonated species, MHL, is negligible. The thermodynamic parameters indicate that the driving force for formation of ML from MOH2+ and HL is mainly enthalpic, with entropic contributions favoring InL2+ and disfavoring GaL2+ formation. The kinetic (stopped-flow) experiments are interpreted on the basis of two parallel reaction paths both involving reaction of the undissociated ligand (HL): (a) M + HL <==> MHL <==> ML + H where MHL is in a steady state and (b) MOH + HL <==> ML + H2O. Whereas gallium binding to BHA and PBHA proceeds mainly through path b, indium binding to PBHA proceeds through both a and b paths. The rates of both the a and b steps are ligand dependent. Two alternative mechanisms are proposed. The first is based on the electronic characteristics of the ligands and is of the Ia type. The second, of the Id type, assumes that a considerable fraction of the ligand is unreactive owing to intramolecular hydrogen bonding (possibly including a water molecule) which blocks the reaction site. The reasons for preferring the former mechanism are discussed. 相似文献
15.
16.
Wu Feng Deng Nansheng E. M. Glebov I. P. Pozdnyakov V. P. Grivin V. F. Plyusnin N. M. Bazhin 《Russian Chemical Bulletin》2007,56(5):900-903
The formation of MV•+ radical cations was observed upon the laser flash photolysis of the iron(III) tartrate complex [FeIIITart]+ (1) in the presence of methyl viologen (MV2+). The rate constants of the reactions involving MV•+ were measured. The intramolecular electron trans-fer to form FeII and escape of the organic radical to the solvent bulk upon the photolysis of 1 were proposed.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 866–869, May, 2007. 相似文献
17.
Abdel-Khalek Ahmed A. Sayyah El-Said M. Ewais Hassan A. 《Transition Metal Chemistry》1997,22(6):557-560
Oxidation of the chromium(III)-l-arginine complex [CrIII(L)2(H2O)2]+ by periodate has been investigated. In aqueous solutions,
[CrIII(L)2(H2O)2]+ is oxidized by IO−4 according to the rate law: d[CrVI]/dt=k2K5[CrIII]T [IVII]T/1 +([H+]/K1)+K5[IVII]T where
k2 is the rate constant for the electron transfer process, K1 the equilibrium constant for the dissociation of [CrIII(L)2-
(H2O)2]+ to [CrIII(L)2(H2O)(OH)]+H+, and K5 the pre-equilibrium formation constant. Values of k2= 4.02×10−3s−1, K1=5.60×10−4m
and K5=171m−1 were obtained at 30°C and I=0.2m. Thermodynamic activation parameters were calculated. It is proposed that electron
transfer proceeds through an inner-sphere mechanism via coordination of IO−4 to chromium(III).
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
18.
Ahmed A. Abdel-Khalek Said M. Sayyah Fadia F. Abdel-Hameed 《Transition Metal Chemistry》1994,19(1):108-110
A novel chromium(III) complex of tetraoxalylurea was prepared. In aqueous solutions, [CrIII(H2L)(H2O)]+ (H2L = diprotonated tetraoxalylurea) is oxidized by IO
4
–
according to the rate law
相似文献
19.
20.
Enyedy ÉA Primik MF Kowol CR Arion VB Kiss T Keppler BK 《Dalton transactions (Cambridge, England : 2003)》2011,40(22):5895-5905
Stoichiometry and stability of Ga(III), Fe(III), Fe(II) complexes of Triapine and five related α-N heterocyclic thiosemicarbazones with potential antitumor activity have been determined by pH-potentiometry, UV-vis spectrophotometry, (1)H NMR spectroscopy, and spectrofluorimetry in aqueous solution (with 30% DMSO), together with the characterization of the proton dissociation processes. Additionally, the redox properties of the iron complexes were studied by cyclic voltammetry at various pH values. Formation of high stability bis-ligand complexes was found in all cases, which are predominant at physiological pH with Fe(III)/Fe(II), whilst only at the acidic pH range with Ga(III). The results show that among the thiosemicarbazones with various substituents the N-terminal dimethylation does not exert a measurable effect on the redox potential, but has the highest impact on the stability of the complexes as well as the cytotoxicity, especially in the absence of a pyridine-NH(2) group in the molecule. In addition the fluorescence properties of the ligands in aqueous solution and their changes caused by Ga(III) were studied. 相似文献
|