首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Hybrid silica monoliths functionalized with octyl groups and dedicated to chromatographic separations in the reversed-phase mode were directly synthesized within capillaries according to the protocol described by Yan et al. [L.J. Yan, Q.H. Zhang, Y.Q. Feng, W.B. Zhang, T. Li, L.H. Zhang, Y.K. Zhang, J. Chromatogr. A 1121 (2006) 92]. Although these monoliths allowed reaching high efficiencies in capillary electrochromatography (CEC), serious limitations prohibited their application in nano-liquid chromatography (nano-LC). Such limitations observed as poor performances in the nano-LC mode and the lack of reproducibility of the synthesis were related to the longitudinal morphological inhomogeneities of the hybrid material along the capillary. Thus, several modifications were conducted in the synthesis protocol in order to improve the resulting morphology of the monolith making it suitable for nano-LC separations. The influence of several critical parameters (such as the addition temperature of the basic catalyst and the hydrolysis duration) on the textural and chromatographic properties had been extensively studied. It was found that a decrease (i.e. 0 degrees C) of the temperature addition of the basic catalyst associated with a shorter hydrolysis duration (1h instead of 6h) allowed (i) delaying the gelation time and consequently facilitating the capillary filling step, (ii) increasing the structural homogeneity of the hybrid monoliths, i.e. their chromatographic performances in nano-liquid chromatography also (iii) greatly improving the reproducibility of the synthesis within the capillary without impairing the material's carbon load, i.e. the incorporation of the less hydrolysable C(8) precursor. The resulting hybrid monoliths afforded retention factors comparable to that previously obtained for C(18) grafted silica monoliths and efficiencies that are the best ever recorded in nano-LC with hybrid monoliths and that are close to the ones achieved with grafted silica monoliths. In fact, this modified protocol allowed a significant improvement of the performances in nano-LC which could be observed by the decrease of the mean value of H(min) going from 123 microm (Yan's protocol) to 24 microm (modified protocol) for a same length of capillary (l = 8.5 cm). In addition, the reproducibility of the synthesis was greatly improved through a factor six of reduction on the calculated standard deviation of these efficiencies. The high permeability and longitudinal homogeneity of the synthesized monolith allowed increasing the capillary length (for example, a 75-cm capillary was conveniently filled with hybrid silica monolith) and the column could be eluted at a very low backpressure leading to chromatographic performances up to 40,000 plates. Finally, the good efficiencies in the nano-LC mode combined with the excellent performances already present in the CEC mode led to fast (less than 1 min) and high efficient separations in the pressurized capillary electrochromatography (p-CEC) mode.  相似文献   

2.
During the last decade, silica monolithic capillaries have focused more and more attention on miniaturized separation techniques like CEC, nano-LC, and chip electrochromatography owing to their unique chromatographic properties and to their possible in situ synthesis. Nevertheless, the preparation of conventional silica-based individual monolithic columns is time consuming, owing to the individual steps involved, including the synthesis of the silica matrix and its subsequent on-column chemical grafting. The hybrid organic-inorganic monoliths, whose synthesis is based on the polycondensation of siloxane with organosiloxane precursors, seems to be an attractive alternative since their direct synthesis leads to silica monoliths with organic moieties covalently linked to the inorganic silica matrix through hydrolytically stable Si-C bonds. This study describes the synthesis of hybrid monoliths using propyltrimethoxysilane (C3-TriMOS) as a new kind of silica coprecursor to subsequently increase the hydrophobicity of the stationary phase. The influence of several experimental parameters (pH, gelation temperature, relative proportion of the precursors) on the textural (skeleton and macropore size) and chromatographic properties (efficiency, retention, and electroosmotic mobility) of the obtained monoliths are discussed. The results show that the optimal coprecursor incorporation is obtained after a postgelation step during which the condensation of the C3-TriMOS coprecursor is favored by an increase in the pH medium. Thermal hydrolysis of urea previously added to the polymerization mixture allows this in situ pH increase. These hybrid monoliths present hydrophobic properties and allow the separation of test mixtures in the RP mode without any further modification. Moreover, they present excellent efficiencies since reduced plate height as low as 5 and 15 microm are obtained in the electrodriven mode (CEC) and in the hydrodynamic one (nano-LC), respectively.  相似文献   

3.
Monolithic silica columns with surface-bound octadecyl (C18) moieties have been prepared by a sol-gel process in 100 microm ID fused-silica capillaries for reversed-phase capillary electrochromatography of neutral and charged species. The reaction conditions for the preparation of the C18-silica monoliths were optimized for maximum surface coverage with octadecyl moieties in order to maximize retention and selectivity toward neutral and charged solutes with a sufficiently strong electroosmotic flow (> 2 mm/s) to yield rapid analysis time. Furthermore, the effect of the pore-tailoring process on the silica monoliths was performed over a wide range of treatment time with 0.010 M ammonium hydroxide solution in order to determine the optimum time and conditions that yield mesopores of narrow pore size distribution that result in high separation efficiency. Under optimum column fabrication conditions and optimum mobile phase composition and flow velocity, the average separation efficiency reached 160 000 plates/m, a value comparable to that obtained on columns packed with 3 microm C18-silica particles with the advantages of high permeability and virtually no bubble formation. The optimized monolithic C18-silica columns were evaluated for their retention properties toward neutral and charged analytes over a wide range of mobile phase compositions. A series of dimensionless retention parameters were evaluated and correlated to solute polarity and electromigration property. A dimensionless mobility modulus was introduced to describe charged solute migration and interaction behavior with the monolithic C18-silica in a counterflow regime during capillary electrochromatography (CEC )separations. The mobility moduli correlated well with the solute hydrophobic character and its charge-to-mass ratio.  相似文献   

4.
The porosity of monolithic silica columns is measured by using different analytical methods. Two sets of monoliths were prepared with a given mesopore diameter of 10 and 25 nm, respectively and with gradated macropore diameters between 1.8 and 7.5 microm. After preparing the two sets of monolithic silica columns with different macro- and mesopores the internal, external and total porosity of these columns are determined by inverse size-exclusion chromatography (ISEC) using polystyrene samples of narrow molecular size distribution and known average molecular weight. The ISEC data from the 4.6 mm analytical monolithic silica columns are used to determine the structural properties of monolithic silica capillaries (100 microm I.D.) prepared as a third set of samples. The ISEC results illustrate a multimodal mesopore structure (mesopores are pores with stagnant zones) of the monoliths. It is found by ISEC that the ratio of the different types of pores is dependent on the change in diameter of the macropores (serve as flow-through pores). The porosity data achieved from the mercury penetration measurement and nitrogen adsorption as well of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures are correlated with the results we calculated from the ISEC measurements. The ISEC results, namely the multimodal pore structure of the monoliths, reported in several publications, are not confirmed analyzing the pore structures of the different silica monoliths using all other analytical methods.  相似文献   

5.
Chiral-modified silica-based monoliths have become well-established stationary phases for both high performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The silica-based monoliths were fabricated either in situ in the capillaries for nano-HPLC and CEC or in a mould for “conventional” HPLC. The present review summarizes the chiral modification of silica monoliths and the recent development in the field of enantioselective separations by nano-HPLC and CEC.  相似文献   

6.
Separation of enantiomers was performed by applying packed capillary electrochromatography (CEC). Fused-silica capillaries of different lengths with an inner diameter of 100 microm were packed with a cellulose derivative immobilized onto macroporous silica gel. Parameters such as content of modifier in the mobile phase, concentration and pH of the buffer were varied for a set of test capillaries to determine their influence on enantioselectivity. In packed CEC the highest influence on resolution of the test racemates was found by changing the acetonitrile content, while variation of the buffer concentration mostly affects the electroosmotic velocity. The performance of packed CEC and nano-LC was also compared. Packed CEC showed much better column efficiency and enantioselectivity under similar flow/electroosmotic velocity.  相似文献   

7.
A comparison is made between the efficiency of microparticulate capillary columns and silica and polymer-based monolithic capillary columns in the pressure-driven (high-performance liquid chromatography) and electro-driven (capillary electrochromatography) modes. With packed capillary columns similar plate heights are possible as with conventional packed columns. However, a large variation is observed in the plate heights for individual columns. This can only be explained by differences in the quality of the packed bed. The minimum plate height obtained with silica monolithic capillary columns in the HPLC mode is approximately 10 microm, which is comparable to that of columns packed with 5-microm particles. The permeability of wide-pore silica monoliths was found to be much higher than that of comparable microparticulate columns, which leads to much lower pressure drops for the same eluent at the same linear mobile phase velocity. For polymer-based monolithic columns (acrylamide, styrene/divinyl benzene, methacrylate, acrylate) high efficiencies have been found in the CEC mode with minimum plate heights between 2 and 10 microm. However, in the HPLC mode minimum plate heights in the range of 10 to 25 microm have been reported.  相似文献   

8.
Okanda FM  El Rassi Z 《Electrophoresis》2006,27(5-6):1020-1030
In this report, microcolumn separation schemes involving monolithic capillary columns with immobilized lectins, and relevant to nanoglycomics/nanoproteomics were introduced. Positive and neutral monoliths based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) were designed for achieving lectin affinity chromatography (LAC) by nano-LC and CEC. The positive monoliths (i.e., monoliths with cationic sites) afforded relatively high permeability in nano-LC but lack predictable EOF magnitude and direction, while neutral monoliths provided a good compromise between reasonable permeability in nano-LC and predictable EOF in CEC. Lectin affinity nano-LC permitted the enrichment of classes of different glycoproteins having similar N-glycans recognized by the immobilized lectin, whereas lectin affinity CEC provided the simultaneous capturing and separation of different glycoproteins due to differences in charge-to-mass ratio. Also, this investigation demonstrated for the first time the coupling of lectin capillary columns in series (i.e., tandem columns) for enhanced separation of glycoproteins by LAC using the CEC modality. Furthermore, in the coupled columns format, glycoforms of a given glycoprotein were readily separated.  相似文献   

9.
Ordered mesoporous silicas such as micelle-templated silicas (MTS) feature unique textural properties in addition to their high surface area (approximately 1000 m2/g): narrow mesopore size distributions and controlled pore connectivity. These characteristics are highly relevant to chromatographic applications for resistance to mass transfer, which has never been studied in chromatography because of the absence of model materials such as MTS. Their synthesis is based on unique self-assembly processes between surfactants and silica. In order to take advantage of the perfectly adjustable texture of MTS in chromatographic applications, their particle morphology has to be tailored at the micrometer scale. We developed a synthesis strategy to control the particle morphology of MTS using the concept of pseudomorphic transformation. Pseudomorphism was recognized in the mineral world to gain a mineral that presents a morphology not related to its crystallographic symmetry group. Pseudomorphic transformations have been applied to amorphous spherical silica particles usually used in chromatography as stationary phases to produce MTS with the same morphology, using alkaline solution to dissolve progressively and locally silica and reprecipitate it around surfactant micelles into ordered MTS structures. Spherical beads of MTS with hexagonal and cubic symmetries have been synthesized and successfully used in HPLC in fast separation processes. MTS with a highly connected structure (cubic symmetry), uniform pores with a diameter larger than 6 nm in the form of particles of 5 microm could compete with monolithic silica columns. Monolithic columns are receiving strong interest and represent a milestone in the area of fast separation. Their synthesis is a sol-gel process based on phase separation between silica and water, which is assisted by the presence of polymers. The control of the synthesis of monolithic silica has been systematically explored. Because of unresolved yet cladding problems to evaluate the resulting macromonoliths in HPLC, micromonoliths were synthesized into fused-silica capillaries and evaluated by nano-LC and CEC. Only CEC allows to gain high column efficiencies in fast separation processes. Capillary silica monolithic columns represent attractive alternatives for miniaturization processes (lab-on-a chip) using CEC.  相似文献   

10.
The focus of this review is on current developments in monolithic stationary phases for the fast analysis of inorganic ions and other small molecules in ion chromatography (IC) and capillary electrochromatography (CEC), concentrating in particular on the properties of organic (polymer) monolithic materials in comparison to inorganic (silica-based) monoliths. The applicability of these materials for fast IC is discussed in the context of recent publications, including the range of synthesis and modification procedures described. While commercial monolithic silica columns already show promising results on current IC instrumentation, polymer-based monolithic stationary phases are currently predominantly used in the capillary format on modified micro-IC systems. However, they are beginning to find application in IC particularly under high pH conditions, with the potential to replace their particle-packed counterparts.  相似文献   

11.
The aim of this work is to join the advantages of two different kinds of stationary phases: monolithic columns and zirconia-based supports. On the one hand, silica monolithic columns allow a higher efficiency with a lower back-pressure than traditional packed columns. On the other hand, chromatographic stationary phases based on zirconia have a higher thermal and chemical stability and specific surface properties. Combining these advantages, a zirconia monolith with a macroporous framework could be a real improvement in separation sciences. Two main strategies can be used in order to obtain a zirconia surface on a monolithic skeleton: coating or direct synthesis. The coverage by a zirconia layer of the surface of a silica-based monolith can be performed using the chemical properties of the silanol surface groups. We realized this coverage using zirconium alkoxide and we further grafted n-dodecyl groups using phosphate derivatives. Any loss of efficiency was observed and fast separations have been achieved. The main advance reported in this paper is related to the preparation of zirconia monoliths by a sol-gel process starting from zirconium alkoxide. The synthesis parameters (hydrolysis ratio, porogen type, precursor concentration, drying step, etc.) were defined in order to produce a macroporous zirconia monoliths usable in separation techniques. We produced various homogeneous structures: zirconia rod 2 cm long with a diameter of 2.3 mm, and zirconia monolith inside fused silica capillaries with a 75 microm I.D. These monoliths have a skeleton size of 2 microm and have an average through pore size of 6 microm. Several separations have been reported.  相似文献   

12.
Microwave irradiation can provide a viable alternative to the traditional means such as ultraviolet light and thermal initiation for the preparation of monolithic capillary columns. Polystyrene-based monolithic stationary phases were prepared in situ in fused-silica capillaries and simultaneously in vials. The column permeability, electrophoretic and chromatographic behavior were evaluated using pressure-assisted capillary electrochromatography (pCEC), capillary electrochromatography (CEC) and low pressure liquid chromatography (LPLC). With an optimal monolithic material, the largest theoretical plates for preparing the column could be close to 18,000 plates/m for thiourea in the mode of pCEC. Furthermore, the influence of the composition of the porogenic solvents (toluene/isooctane) on the morphology of organic-based monoliths [poly(styrene-divinylbenzene-methacrylic acid)] was systematically studied with mercury intrusion porosimetry and scanning electron microscopy. The monoliths which were prepared with a high content of isooctane had a bigger pore size and better permeability, and hence resulted in a faster separation.  相似文献   

13.
Wu R  Hu L  Wang F  Ye M  Zou H 《Journal of chromatography. A》2008,1184(1-2):369-392
The column technologies play a crucial role in the development of new methods and technologies for the separation of biological samples containing hundreds to thousands compounds. This review focuses on the development of monolithic technology in micro-column formats for biological analysis, especially in capillary liquid chromatography, capillary electrochromatography and microfluidic devices in the past 5 years (2002-2007) since our last review in 2002 on monoliths for HPLC and CEC. The fabrication and functionalization of monoliths were summarized and discussed, with the aim of presenting how monolithic technology has been playing as an attractive tool for improving the power of existing chromatographic separation processes. This review consists of two parts: (i) the recent development in fabrication of monolithic stationary phases from direct synthesis to post-functionalization of the polymer- and silica-based monoliths tailoring the physical/chemical properties of porous monoliths; (ii) the application of monolithic stationary phases for one- and multi-dimensional capillary liquid chromatography, fast separation in capillary electro-driven chromatography, and microfluidic devices.  相似文献   

14.
Over the last decade, monoliths or continuous beds have emerged as an alternative to traditional packed-bed columns for use in capillary electrochromatography (CEC) and micro-high performance liquid chromatography (micro-HPLC). Monolithic columns can be divided into two categories: silica-based monolithic columns and rigid organic polymer-based monolithic columns resulting from the polymerization of acrylamide, styrene, acrylate or methacrylate monomers. In this paper, the chemistry and most recent applications of these various types of monoliths in both CEC and micro-HPLC are presented.  相似文献   

15.
16.
Amylose tris(5-chloro-2-methylphenylcarbamate) was coated onto native and aminopropylsilanized silica in order to prepare chiral stationary phases (CSP) for enantioseparations using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC). The effect of the nature of silica, the particle size and pore diameter, the chiral selector loading onto silica, the mobile phase composition and pH, as well as separation variables such as a linear flow rate of the mobile phase, applied voltage in CEC, etc. on the separation of enantiomers was studied. It was found that CSPs based on amylose tris(5-chloro-2-methylphenylcarbamate) can be used for preparation of stable capillary columns for enantioseparations by nano-LC and CEC in combination with polar organic and aqueous–organic mobile phases. Higher peak efficiency was observed in CEC than in nano-LC.  相似文献   

17.
A high performance liquid chromatography (HPLC) system complemented with T-split, capillary detection cell and a high voltage power supply was used for peptide mapping by gradient electrochromatography and nanoliquid chromatography (nano-LC). With capillary columns of 100 microm ID, 6 cm packed with octadecylated 1.5 microm silica particles, the typical analysis time was approximately 10-15 min. The resolution of a tryptic digest of cytochrome c obtained by electrochromatography at 100 kV/m was superior compared to the analysis by nano-LC. Bubble formation caused by Joule heating at currents up to 100 microA was successfully suppressed by using a resistor capillary of 25 microm ID connected to the outlet of the packed column.  相似文献   

18.
In this study, metal organic framework (MOF)–organic polymer monoliths prepared via a 5-min microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with the addition of various weight percentages (30–60%) of porous MOF (MIL-101(Cr)) were developed as stationary phases for capillary electrochromatography (CEC) and nano-liquid chromatography (nano-LC). Powder X-ray diffraction (PXRD) patterns and nitrogen adsorption/desorption isotherms of these MOF–organic polymer monoliths showed the presence of the inherent characteristic peaks and the nano-sized pores of MIL-101(Cr), which confirmed an unaltered crystalline MIL-101(Cr) skeleton after synthesis; while energy dispersive spectrometer (EDS) and micro-FT-IR spectra suggested homogenous distribution of MIL-101(Cr) in the MIL-101(Cr)–poly(BMA–EDMA) monoliths. This hybrid MOF–polymer column demonstrated high permeability, with almost 800-fold increase compared to MOF packed column, and efficient separation of various analytes (xylene, chlorotoluene, cymene, aromatic acids, polycyclic aromatic hydrocarbons and trypsin digested BSA peptides) either in CEC or nano-LC. This work demonstrated high potentials for MOF–organic polymer monolith as stationary phase in miniaturized chromatography for the first time.  相似文献   

19.
A series of amphiphilic macroporous mixed-mode acrylamide-based continuous beds bearing positively charged quaternary ammonium groups is synthesized for capillary electrochromatography (CEC) under variation of the concentration of the cationic monomer in the polymerization mixture. Positively charged mixed-mode monolithic stationary phases are synthesized in pre-treated fused silica capillaries of 100 µm I.D via single step free radical copolymerization of cyclodextrin-solubilized N-tert-butylacrylamide, a hydrophilic crosslinker (piperazine diacrylamide), a hydrophilic neutral monomer (methacrylamide), and a positively charged monomer ([2-(methacryloyloxy)ethyl]trimethyl ammonium methyl sulfate) in aqueous solution containing the lyotropic salt ammonium sulfate as a pore-forming agent. The synthesized monolithic stationary phases contain hydrophobic, hydrophilic, and charged functionalities. They can be employed for the CEC separations of different classes of neutral and charged solutes (with varied polarity) in the reversed-phase mode, in the normal-phase mode, in the ion-exchange mode, in a mixed-mode, or in the hydrophilic interaction liquid chromatography (HILIC) mode. The influence of the concentration of the cationic monomer in the polymerization mixture on retention factor, electroosmotic mobility, and methylene selectivity (αmeth) is studied under isocratic conditions for alkylphenones in the reversed-phase mode by capillary electrochromatography (CEC). Scanning electron microscopy (SEM) micrographs demonstrate that the morphology of the synthesized monoliths (i.e., the domain size) is strongly influenced by the variation of the concentration of the cationic monomer in the polymerization mixture.  相似文献   

20.
Methacrylate-ester-based monoliths containing quaternary ammonium groups were prepared in situ in capillary columns and in simultaneous experiments in vials, employing thermal initiation. The chromatographic properties of the monoliths were determined with capillary electrochromatography (CEC), and their morphology was studied with mercury-intrusion porosimetry on the bulk materials. Materials with different, well repeatable pore-size distributions could be prepared. A satisfactory column-to-column and run-to-run repeatability was obtained for the electro-osmotic mobility, the retention characteristics (k-values) and the efficiency on the columns prepared and tested in the CEC mode. A relatively high electro-osmotic flow was observed in the direction of the positive electrode. The electro-osmotic mobility was found to be influenced only marginally by mobile-phase parameters such as the pH, ionic strength, and acetonitrile content. The retention behavior of the monolithic columns was similar to that of columns packed with C18-modified silica particles. Columns could be prepared with optimum plate heights ranging from 6 microm for unretained compounds to 20 microm for well retained (k=2.5) polyaromatic hydrocarbons. However, for specific analytes a - still unexplained - lower chromatographic column efficiency was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号