首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In this paper, the robust finite-time tracking problem is addressed for a square fully actuated class of nonlinear systems subjected to disturbances and uncertainties. Firstly, two applicable lemmas are derived and novel nonlinear sliding surfaces (manifolds) are defined by applying these lemmas. Secondly, by developing the nonsingular terminal sliding mode control, two different types of robust nonlinear control inputs are designed to meet and accomplish the aforementioned finite-time tracking objective. The global finite-time stability of the closed-loop nonlinear system is evaluated analytically and mathematically. The proposed control inputs are utilized to tackle and solve two interesting issues containing (a): the finite-time tracking problem of the unified chaotic system and (b): the finite-time synchronization of two non-identical hyperchaotic systems. Finally, based on MATLAB software, two numerical simulations are carried out to illustrate and demonstrate the effectiveness and performance of the proposed robust finite-time nonlinear control schemes.

  相似文献   

2.

In this article, a distributed formation tracking controller is proposed for Multi-agent systems (MAS) consisting of quadrotors. It is considered that each quadrotor in the MAS only shares its translation position information with its neighbors. Moreover, position information is transmitted at nonuniform and asynchronous time instants. The control system is divided into an outer-loop for the position control and an inner-loop for the attitude control. A continuous-discrete time observer is used in the outer-loop to estimate both position and velocity of the quadrotor and its neighbors using discrete position information it receives. Then, these estimated states are used to design the position controller in order to enable quadrotors to generate the required geometric shape. A finite-time attitude controller is designed to track the desired attitude as dictated by the position controller. Finally, a closed-loop stability analysis of the overall system including nonlinear coupling is performed.

  相似文献   

3.
This study investigates the problem of finite-time tracking control for a class of high-order nonlinear systems. Due to the existence of uncertain time-varying control coefficient and unknown nonlinear perturbations in the nonlinear dynamics, the existing finite-time control results cannot solve the finite-time tracking problem for this kind of nonlinear systems. Based on the technique of adding a power integrator a variable structure control method is proposed. Under the proposed control law, it is shown that the reference signal can be tracked in a finite time. As an application of the proposed theoretic results, the problem of finite-time attitude tracking control for the roll channel of bank-to-turn missile is solved. Simulation results are given to demonstrate the effectiveness of the proposed method.  相似文献   

4.
In this paper, a finite-time controller is proposed for the quadrotor aircraft to achieve hovering control in a finite time. The design of controller is mainly divided into two steps. Firstly, a saturated finite-time position controller is designed such that the position of quadrotor aircraft can reach any desired position in a finite time. Secondly, a finite-time attitude tracking controller is designed, which can guarantee that the attitude of quadrotor aircraft converges to the desired attitude in a finite time. By homogenous system theory and Lyapunov theory, the finite-time stability of the closed-loop systems is given through rigorous mathematical proofs. Finally, numerical simulations are given to show that the proposed algorithm has a faster convergence performance and a stronger disturbance rejection performance by comparing to the PD control algorithm.  相似文献   

5.
Yao  Liqiang  Feng  Likang 《Nonlinear dynamics》2023,111(9):8103-8113

The noise-to-state finite-time practical stability for random nonlinear systems and its application is studied in this paper. The definition of noise-to-state finite-time practical stability is firstly introduced in probability sense for random nonlinear systems. Next, the related stability criterion is also given by Lyapunov approach. For random benchmark system, the finite-time adaptive tracking control problem is investigated by the vectorial backstepping method and the obtained stability theorem. Simulation example illustrates that the constructed controller design scheme is effective and feasible.

  相似文献   

6.
Zhang  Rui  Xu  Bin  Zhao  Wanliang 《Nonlinear dynamics》2020,101(4):2223-2234

This paper addresses the finite-time prescribed performance control of MEMS gyroscopes. From the perspective of practical engineering, this paper arranges the desirable transient and steady-state performances according to the engineering requirements in the controller design procedure. For the tracking performance, prescribed performance control is studied to limited the steady-state error and the maximum overshoot. For the prescribed settling time, super-twisting sliding mode control and nonsingular terminal sliding mode control are employed to achieve finite-time convergence, respectively. The system stability is verified via Lyapunov approach. Through simulation tests, it is demonstrated that prescribed performance and finite-time convergence can be obtained under the proposed control scheme.

  相似文献   

7.
航天器有限时间饱和姿态跟踪控制   总被引:1,自引:0,他引:1  
针对刚体航天器系统,对存在模型不确定性、外界干扰力矩和控制器饱和等条件下的姿态跟踪控制问题进行了研究。首先,考虑未知模型不确定性和外界干扰,且总干扰上界为未知常数,结合快速非奇异终端滑模、快速终端滑模趋近律以及辅助系统构造了基本的鲁棒有限时间饱和控制器,并通过辅助系统直接补偿了控制器饱和;其次,针对系统总干扰具有多项式上界的情形,进一步结合自适应控制算法,对其上界函数中的未知参数进行在线估计,并设计了自适应有限时间饱和控制器。同时,基于Lyapunov稳定性理论证明了所提出控制算法的有限时间收敛特性。最后,通过数值仿真验证所提出控制算法的控制效果,在两种控制器作用下姿态的跟踪精度分别为5×10-5和1×10-5,证明了所提出控制算法的有效性。  相似文献   

8.
Zhou  Xin  Gao  Chuang  Li  Zhi-gang  Ouyang  Xin-yu  Wu  Li-bing 《Nonlinear dynamics》2021,103(2):1645-1661

This paper considers the problems of finite-time prescribed performance tracking control for a class of strict-feedback nonlinear systems with input dead-zone and saturation simultaneously. The unknown nonlinear functions are approximated by fuzzy logic systems and the unmeasurable states are estimated by designing a fuzzy state observer. In addition, a non-affine smooth function is used to approximate the non-smooth input dead-zone and saturated nonlinearity, and it is varied to the affine form via the mean value theorem. An adaptive fuzzy output feedback controller is developed by backstepping control method and Nussbaum gain method. It guarantees that the tracking error falls within a pre-set boundary at finite time and all the signals of the closed-loop system are bounded. The simulation results illustrate the feasibility of the design scheme.

  相似文献   

9.
Fang  Haoran  Wu  Yuxiang  Xu  Tian  Wan  Fuxi  Wang  Xiaohong 《Nonlinear dynamics》2022,110(1):497-512

This paper solves the prescribed-time control problem for a class of robotic manipulators with system uncertainty and dead zone input. To make the system stable within a given convergence time T, a novel prescribed-time adaptive neural tracking controller is proposed by using the temporal scale transformation method and Lyapunov stability theory. Unlike the finite-time and the fixed-time stability where the convergence time depends on the controller parameters, the convergence time constant T is introduced into the proposed controller so that the closed-loop system will be stable within T. To cope with the system uncertainty, radial basis function neural networks (RBFNNs) are used and only need to update one parameter online. In addition, by choosing the same structure and parameters of RBFNNs, the proposed method can shorten the convergence time of the neural networks. Finally, simulation results are presented to demonstrate the effectiveness of the prescribed-time controller.

  相似文献   

10.
Wei  Chengzhou  Li  Junmin 《Nonlinear dynamics》2021,103(3):2753-2768

In this paper, the finite-time non-fragile boundary feedback control problem is investigated for a class of nonlinear parabolic systems, where both the multiplicative and additive controller gain variations are considered to describe the actuator parameter perturbation. Non-fragile boundary control strategies are designed with respect to two controller gain variations via collocated or non-collocated boundary measurement, respectively. In light of the finite-time stability and Lyapunov-based techniques, some sufficient conditions are presented in terms of linear matrix inequalities such that the resulting closed-loop system is well-posedness and practically finite-time stable. Finally, numerical examples are given to verify the effectiveness of the proposed design method.

  相似文献   

11.
Martins  Luís  Cardeira  Carlos  Oliveira  Paulo 《Nonlinear dynamics》2022,110(1):479-495

This paper proposes a novel control architecture for quadrotors that relies twice on the Feedback Linearization technique. The solution comprises a tracking inner-loop resulting from applying the mentioned method to the attitude and altitude dynamics. The horizontal movement, and, thereby, the zero dynamics, are stabilized without linearizing nor simplifying it by resorting to the same nonlinear technique. Linear quadratic controllers with integral action are implemented to the resulting chain of integrators of the inner and outer loops. As a result, the inner-loop dynamics asymptotically track the desired attitude and altitude over a broad region of the state-space, and the outer-loop yields a tracking system that is input-to-state stable and exponentially stable in the absence of external inputs. The stability of the proposed inner-outer loop control architecture is studied, leading to the proof of asymptotic stability in an extensive region of the state-space. Trajectory tracking, the capacity to overcome significant deviations on the mass and inertia values, and the robustness to external disturbances are evaluated using a simulation model, in which measurement noise and saturation limits are considered. In addition, comparisons regarding the performance in trajectory tracking of the proposed strategy and the results obtained with similar solutions from the literature are established. Experimental tests were conducted using a commercially available drone, equipped with an Inertial Measurement Unit, a compass, and an altimeter. A motion capture system gives the inertial position of the drone. The results obtained allow the validation of the modeling and control system solution.

  相似文献   

12.

This paper introduces a homogeneous controller along a fixed-time state and fault observer for finite-time stabilization and fault accommodation of a remotely-operated vehicle in the presence of actuator saturation and rate limits. For this, a novel tuning algorithm is improvised for manipulating the degree of homogeneity in homogeneous controllers to effectively acquire different properties from the overall control system. The tuning of degree of homogeneity is based on vehicle’s velocity. The proposed algorithm results in a switching-type controller, which undergoes three different stages during the operation, to eliminate the sensitivity of conventional finite-time and fixed-time controllers to large initial errors in the presence of thruster constraints. In addition, a new fixed-time fault and state observer is designed for the realization of output feedback control and fault tolerance by combining a fixed-time state observer with a fault estimation unit. In contrast to conventional extended-state observers, this observer considers the dynamics of the thruster system in its formulation so that better performance can be provided for the control system upon thruster failures. Control allocation is utilized to accommodate thruster failures and faults and to take account of thruster saturation and rate limits. Stability analyses are carried out for the overall control system and the proposed observer. It is shown that the closed-loop control system would be globally finite-time stable. The state estimation subsystem is fixed-time stable and the fault estimation unit is input-to-state stable. Simulations are carried out and comparisons are made with several finite-time and fixed-time controllers to outline the advantages of the proposed homogeneous controller and the benefits of the overall fault-tolerant control system.

  相似文献   

13.
Kim  Seok-Kyoon  Ahn  Choon Ki 《Nonlinear dynamics》2021,103(2):1681-1692

The proposed observer-based control mechanism solves the trajectory tracking problem in the presence of external disturbances with the reduction in sensor numbers. This systematically considers the quadcopter nonlinear dynamics and parameter and load variations by adopting the standard controller design approach based on a disturbance observer (DOB). The first feature is designing first-order observers for estimating the velocity and angular velocity error, with their parameter independence obtained from the DOB design technique. As the second feature, the resultant velocity observer-based control action including active damping and DOBs secures first-order tracking behavior for the position and attitude (angle) loops through pole zero cancellation, thereby forming a proportional–derivative control structure. Closed-loop analysis results reveal the performance recovery and steady-state error removal properties in the absence of tracking error integrators. The numerical verification confirms the effectiveness of the proposed mechanism using MATLAB/Simulink.

  相似文献   

14.
This paper is concerned with finite-time chaos control of unified chaotic systems with uncertain parameters. Based on the finite-time stability theory in the cascade-connected system, a nonlinear control law is presented to achieve finite-time chaos control. The controller is simple and easy to be constructed. Simulation results for Lorenz, Lü, and Chen chaotic systems are provided to illustrate the effectiveness of the proposed scheme. Supported by the National Natural Science Foundation of China (Grant No. 60674024).  相似文献   

15.
The finite-time consensus tracking problem for second-order multi-agent system is investigated in this paper. The multi-agent system here is composed of a leader with bounded input signal and n followers with bounded disturbances. A new continuous nonlinear distributed consensus tracking protocol is constructed via nonsingular terminal sliding mode (TSM) scheme. It is proved that the overall system will reach consensus in finite time via Lyapunov theory when appropriately choosing the parameters under directed connected topology. Finally, simulations are performed, and results show that the method is robust and efficient.  相似文献   

16.
Sai  Huayang  Xu  Zhenbang  Xia  Chengkai  Sun  Xiangyang 《Nonlinear dynamics》2022,110(1):431-448

This paper studies an approximate continuous fixed-time terminal sliding mode control (CFTSMC) with prescribed performance for uncertain robotic manipulators. A transformation concerning tracking error using a fixed-time prescribed performance function is proposed to guarantee the transient and steady-state performance of trajectory tracking control for uncertain robotic manipulators within fixed time. Utilizing the transformed error, a smooth fixed-time sliding mode surface is designed. Then, based on the proposed sliding mode surface, an approximate CFTSMC scheme is presented to achieve inherent chattering-free control for uncertain robotic manipulators. According to the Lyapunov stability theory, it is proved that the position tracking error can be bounded in the prescribed performance boundaries and globally converges to a defined small region within fixed time and then approaches exponentially to the origin. Several numerical simulation results demonstrate the effectiveness and superiority of the proposed control strategy for uncertain robotic manipulators.

  相似文献   

17.
This paper studies the problem of finite-time optimal formation tracking for planar vehicles which are considered as rigid bodies, under the condition that the tracking time is given according to task requirements in advance. By using Pontryagin’s maximum principle (PMP) on a Lie group, an optimal control law is designed for vehicles with holonomic dynamics to track a desired reference trajectory at the given tracking time in the manner of rigid formation which is also specified by task requirements. Simultaneously, a corresponding cost function is considered and guaranteed to be optimal. Then, the above mentioned result of tracking is extended to the case of multi-vehicle systems with a directed-tree communication topology. Furthermore, some conditions are proposed to ensure the adjoint orbits of vehicles to be non-holonomic. Finally, the numerical simulations are provided to illustrate the effectiveness of the theoretical results.  相似文献   

18.

Robust tracking control of electrically flexible-joint robots is addressed in this paper. Two important practical situations are considered. The fact that robot actuators have limited voltage and that current measurement is subjected to noise. Let us notice that a few solutions for the voltage-bounded robust tracking control have been proposed. In this paper, we contribute to this subject by presenting a new form of voltage-based control strategy. It proves that the closed loop system is BIBO stable, while actuator/link position errors are uniformly–ultimately bounded stable in agreement with Lyapunov’s direct method in any finite region of the state space. As a second contribution of this paper, we present a robust adaptive control scheme without the need for computation of regressor matrix and current measurement, with the same result on the closed loop system stability. This novelty gives a simple robust tracking control scheme for both structured and unstructured uncertainties based on the function approximation technique. The analytical studies as well as experimental results produced using MATLAB/Simulink external mode control on a flexible-joint electrically driven robot demonstrate high performance of the proposed control scheme.

  相似文献   

19.
Choi  Yun Ho  Yoo  Sung Jin 《Nonlinear dynamics》2019,96(2):959-973

A single function approximation (SFA) approach for event-triggered output-feedback tracker design is presented for uncertain nonlinear time-delay systems in lower-triangular form. Contrary to the existing event-triggered output-feedback control methods dependent on multiple function approximators in the presence of lower-triangular nonlinearities, the proposed SFA approach provides the following advantages: (i) the simple observer structure independent of function approximators; (ii) one event-triggering condition based on only a tracking error; and (iii) the simple control scheme using one function approximator. Thus, the structural simplicity is allowed for implementing the observer and the event-triggering law in the sensor part and the adaptive tracker in the control part. Under the proposed SFA-based event-triggered control scheme, it is shown that the boundedness of closed-loop signals and the existence of a minimum inter-event time are guaranteed regardless of unknown time-delay nonlinearities and unmeasurable state variables.

  相似文献   

20.
A robust attitude tracking control scheme for spacecraft formation flying is presented. The leader spacecraft with a rapid mobile antenna and a camera is modeled. While the camera is tracking the ground target, the antenna is tracking the follower spacecraft. By an angular velocity constraint and an angular constraint, two methods are proposed to compute the reference attitude profiles of the camera and antenna, respectively. To simplify the control design problem, this paper first derives the desired inverse system (DIS), which can convert the attitude tracking problem of 3D space into the regulator problem. Based on DIS and sliding mode control (SMC), a robust attitude tracking controller is developed in the presence of mass parameter uncertainties and external disturbance. By Lyapunov stability theory, the closed loop system stability can be achieved. The numerical simulations show that the proposed robust control scheme exhibits significant advantages for the multi-target attitude tracking of a two-spacecraft formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号