首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For the singularly perturbed system
$$\begin{aligned} \varDelta u_{i,\beta }=\beta u_{i,\beta }\sum _{j\ne i}u_{j,\beta }^2, \quad 1\le i\le N, \end{aligned}$$
we prove that flat segregated interfaces are uniformly Lipschitz as \(\beta \rightarrow +\infty \). As a byproduct of the proof we also obtain the optimal lower bound near flat interfaces,
$$\begin{aligned} \sum _iu_{i,\beta }\ge c\beta ^{-1/4}. \end{aligned}$$
.
  相似文献   

2.
Let \(B_\ell (n)\) denote the number of \(\ell \)-regular bipartitions of n. In this paper, we prove several infinite families of congruences satisfied by \(B_\ell (n)\) for \(\ell \in {\{5,7,13\}}\). For example, we show that for all \(\alpha >0\) and \(n\ge 0\),
$$\begin{aligned} B_5\left( 4^\alpha n+\frac{5\times 4^\alpha -2}{6}\right)\equiv & {} 0 \ (\text {mod}\ 5),\\ B_7\left( 5^{8\alpha }n+\displaystyle \frac{5^{8\alpha }-1}{2}\right)\equiv & {} 3^\alpha B_7(n)\ (\text {mod}\ 7) \end{aligned}$$
and
$$\begin{aligned} B_{13}\left( 5^{12\alpha }n+5^{12\alpha }-1\right) \equiv B_{13}(n)\ (\text {mod}\ 13). \end{aligned}$$
  相似文献   

3.
Let \((x_i)_{i=1}^{+\infty }\) be the digits sequence in the unique terminating dyadic expansion of \(x\in [0,1)\). The run-length function \(l_n(x)\) is defined by
$$\begin{aligned} l_n(x):=\max \left\{ j:x_{i+1}=x_{i+2}=\cdots =x_{i+j}=1\ \text {for some}\ 0\le i\le n-j\right\} . \end{aligned}$$
Erdös and Rényi proved that
$$\begin{aligned} \lim _{n\rightarrow +\infty }\frac{l_n(x)}{\log _2{n}}=1, \text {a.e.}\ x\in [0,1). \end{aligned}$$
In this note, we show that for each pair of numbers \(\alpha ,\beta \in [0,+\infty ]\) with \(\alpha \le \beta \), the following exceptional set
$$\begin{aligned} E_{\alpha ,\beta }=\left\{ x\in [0,1):\liminf _{n\rightarrow +\infty }\frac{l_n(x)}{\log _2{n}}=\alpha ,\ \limsup _{n\rightarrow +\infty }\frac{l_n(x)}{\log _2{n}}=\beta \right\} \end{aligned}$$
has Hausdorff dimension one.
  相似文献   

4.
Let \(a_{\ell ,m}(n)\) denote the number of \((\ell ,m)\)-regular partitions of a positive integer n into distinct parts, where \(\ell \) and m are relatively primes. In this paper, we establish several infinite families of congruences modulo 2 for \(a_{3,5}(n)\). For example,
$$\begin{aligned} a_{3, 5}\left(2^{6\alpha +4}5^{2\beta }n+\frac{ 2^{6\alpha +3}5^{2\beta +1}-1}{3}\right) \equiv 0 , \end{aligned}$$
where \(\alpha , \beta \ge 0\).
  相似文献   

5.
For \(n \ge 1\) let
$$\begin{aligned} {\mathcal {A}}_n := \bigg \{ P: P(z) = \sum \limits _{j=1}^n{z^{k_j}}: 0 \le k_1 < k_2 < \cdots < k_n, k_j \in {\mathbb {Z}} \bigg \}, \end{aligned}$$
that is, \({\mathcal {A}}_n\) is the collection of all sums of \(n\) distinct monomials. These polynomials are also called Newman polynomials. Let
$$\begin{aligned} M_{p}(Q) := \left( \int _{0}^{1}{\left| Q(e^{i2\pi t}) \right| ^p\,dt} \right) ^{1/p}, \qquad p > 0. \end{aligned}$$
We define
$$\begin{aligned} S_{n,p} := \sup _{Q \in {\mathcal {A}}_n}{\frac{M_p(Q)}{\sqrt{n}}} \qquad \text{ and } \qquad S_p := \liminf _{n \rightarrow \infty }{S_{n,p}} \le \Sigma _p := \limsup _{n \rightarrow \infty }{S_{n,p}}. \end{aligned}$$
We show that
$$\begin{aligned} \Sigma _p \ge \Gamma (1+p/2)^{1/p}, \qquad p \in (0,2). \end{aligned}$$
The special case \(p=1\) recaptures a recent result of Aistleitner [1], the best known lower bound for \(\Sigma _1\).
  相似文献   

6.
We consider \(\text {pod}_3(n)\), the number of 3-regular partitions with odd parts distinct, whose generating function is
$$\begin{aligned} \sum _{n\ge 0}\text {pod}_3(n)q^n=\frac{(-q;q^2)_\infty (q^6;q^6)_\infty }{(q^2;q^2)_\infty (-q^3;q^3)_\infty }=\frac{\psi (-q^3)}{\psi (-q)}, \end{aligned}$$
where
$$\begin{aligned} \psi (q)=\sum _{n\ge 0}q^{(n^2+n)/2}=\sum _{-\infty }^\infty q^{2n^2+n}. \end{aligned}$$
For each \(\alpha >0\), we obtain the generating function for
$$\begin{aligned} \sum _{n\ge 0}\text {pod}_3\left( 3^{\alpha }n+\delta _\alpha \right) q^n, \end{aligned}$$
where \(4\delta _\alpha \equiv {-1}\pmod {3^{\alpha }}\) if \(\alpha \) is even, \(4\delta _\alpha \equiv {-1}\pmod {3^{\alpha +1}}\) if \(\alpha \) is odd.
We show that the sequence {\(\text {pod}_3(n)\)} satisfies the internal congruences
$$\begin{aligned} \text {pod}_3(9n+2)\equiv \text {pod}_3(n)\pmod 9, \end{aligned}$$
(0.1)
$$\begin{aligned} \text {pod}_3(27n+20)\equiv \text {pod}_3(3n+2)\pmod {27} \end{aligned}$$
(0.2)
and
$$\begin{aligned} \text {pod}_3(243n+182)\equiv \text {pod}_3(27n+20)\pmod {81}. \end{aligned}$$
(0.3)
  相似文献   

7.
In this note we investigate the function \(B_{k,\ell }(n)\), which counts the number of \((k,\ell )\)-regular bipartitions of n. We shall prove an infinite family of congruences modulo 11: for \(\alpha \ge 2\) and \(n\ge 0\),
$$\begin{aligned} B_{3,11}\left( 3^{\alpha }n+\frac{5\cdot 3^{\alpha -1}-1}{2}\right) \equiv 0\ (\mathrm{mod\ }11). \end{aligned}$$
  相似文献   

8.
We prove that, for all integers \(n\ge 1\),
$$\begin{aligned} \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+a}\right) <\frac{\root n \of {n!}}{\root n+1 \of {(n+1)!}}\le \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+b}\right) \end{aligned}$$
and
$$\begin{aligned} \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\alpha }\right) <\left( 1+\frac{1}{n}\right) ^{n}\frac{\root n \of {n!}}{n}\le \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\beta }\right) , \end{aligned}$$
with the best possible constants
$$\begin{aligned}&a=\frac{1}{2},\quad b=\frac{1}{2^{3/4}\pi ^{1/4}-1}=0.807\ldots ,\quad \alpha =\frac{13}{6} \\&\text {and}\quad \beta =\frac{2\sqrt{2}-\sqrt{\pi }}{\sqrt{\pi }-\sqrt{2}}=2.947\ldots . \end{aligned}$$
  相似文献   

9.
In this paper we study trigonometric series with general monotone coefficients, i.e., satisfying
$$\begin{aligned} \sum \limits _{k=n}^{2n} |a_k - a_{k+1}| \le C \sum \limits _{k=[{n}/{\gamma }]}^{[\gamma n]} \frac{|a_k|}{k}, \quad n\in \mathbb {N}, \end{aligned}$$
for some \(C \ge 1\) and \(\gamma >1\). We first prove the Lebesgue-type inequalities for such series
$$\begin{aligned} n|a_n|\le C \omega (f,1/n). \end{aligned}$$
Moreover, we obtain necessary and sufficient conditions for the sum of such series to belong to the generalized Lipschitz, Nikolskii, and Zygmund spaces. We also prove similar results for trigonometric series with weak monotone coefficients, i.e., satisfying
$$\begin{aligned} |a_n | \le C \sum \limits _{k=[{n}/{\gamma }]}^{\infty } \frac{|a_k|}{k}, \quad n\in \mathbb {N}, \end{aligned}$$
for some \(C \ge 1\) and \(\gamma >1\). Sharpness of the obtained results is given. Finally, we study the asymptotic results of Salem–Hardy type.
  相似文献   

10.
In this paper, we study the existence of solutions for the boundary value problems of fractional perturbation differential equations
$$\begin{aligned} D^{\alpha }\left( \frac{x(t)}{f(t,x(t))}\right) =g(t,x(t)),\;\;a.e.\;t\in J=[0,1], \end{aligned}$$
or
$$\begin{aligned} D^{\alpha }\left( x(t)-f(t,x(t))\right) =g(t,x(t)),\;\;a.e.\;t\in J, \end{aligned}$$
subject to
$$\begin{aligned} x(0)=y(x),\;\;x(1)=m, \end{aligned}$$
where \(1<\alpha <2,\,D^{\alpha }\) is the standard Caputo fractional derivatives. Using some fixed point theorems, we prove the existence of solutions to the two types. For each type we give an example to illustrate our results.
  相似文献   

11.
Let f be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus and denote by \(\lambda _f(n)\) its nth Hecke eigenvalue. Let
$$\begin{aligned} r(n)=\#\left\{ (n_1,n_2)\in \mathbb {Z}^2:n_1^2+n_2^2=n\right\} . \end{aligned}$$
In this paper, we study the shifted convolution sum
$$\begin{aligned} \mathcal {S}_h(X)=\sum _{n\le X}\lambda _f(n+h)r(n), \qquad 1\le h\le X, \end{aligned}$$
and establish uniform bounds with respect to the shift h for \(\mathcal {S}_h(X)\).
  相似文献   

12.
Let \((M,g)\) be a two dimensional compact Riemannian manifold of genus \(g(M)>1\). Let \(f\) be a smooth function on \(M\) such that
$$\begin{aligned} f \ge 0, \quad f\not \equiv 0, \quad \min _M f = 0. \end{aligned}$$
Let \(p_1,\ldots ,p_n\) be any set of points at which \(f(p_i)=0\) and \(D^2f(p_i)\) is non-singular. We prove that for all sufficiently small \(\lambda >0\) there exists a family of “bubbling” conformal metrics \(g_\lambda =e^{u_\lambda }g\) such that their Gauss curvature is given by the sign-changing function \(K_{g_\lambda }=-f+\lambda ^2\). Moreover, the family \(u_\lambda \) satisfies
$$\begin{aligned} u_\lambda (p_j) = -4\log \lambda -2\log \left( \frac{1}{\sqrt{2}} \log \frac{1}{\lambda }\right) +O(1) \end{aligned}$$
and
$$\begin{aligned} \lambda ^2e^{u_\lambda }\rightharpoonup 8\pi \sum _{i=1}^{n}\delta _{p_i},\quad \text{ as } \lambda \rightarrow 0, \end{aligned}$$
where \(\delta _{p}\) designates Dirac mass at the point \(p\).
  相似文献   

13.
For \(k,l\in \mathbf {N}\), let
$$\begin{aligned}&P_{k,l}=\Bigl (\frac{l}{k+l}\Bigr )^{k+l} \sum _{\nu =0}^{k-1} {k+l\atopwithdelims ()\nu } \Bigl (\frac{k}{l}\Bigr )^{\nu }\\&\quad \text{ and }\quad Q_{k,l}=\Bigl (\frac{l}{k+l}\Bigr )^{k+l} \sum _{\nu =0}^{k} {k+l\atopwithdelims ()\nu } \Bigl (\frac{k}{l}\Bigr )^{\nu }. \end{aligned}$$
We prove that the inequality
$$\begin{aligned} \frac{1}{4}\le P_{k,l} \end{aligned}$$
is valid for all natural numbers k and l. The sign of equality holds if and only if \(k=l=1\). This complements a result of Vietoris, who showed that
$$\begin{aligned} P_{k,l}<\frac{1}{2} \quad {(k,l\in \mathbf {N})}. \end{aligned}$$
An immediate corollary is that
$$\begin{aligned} \frac{1}{4}\le P_{k,l}<\frac{1}{2} <Q_{k,l}\le \frac{3}{4} \quad {(k,l\in \mathbf {N})}. \end{aligned}$$
The constant bounds are sharp.
  相似文献   

14.
In this paper, we study the sequences
$$\begin{aligned} I_n=\int _0^1\mathrm {Li}_n(\sin \pi x)\mathrm {d}x\quad \text{ and }\quad J_n=\int _0^1\mathrm {Li}_n(\cos \pi x)\mathrm {d}x, \end{aligned}$$
where \(\mathrm {Li}_n\) is the nth polylogarithm function. Among others, we determine their generating functions, asymptotic behaviour and their connection to the well-known log-sine integrals
$$\begin{aligned} S_n=(-1)^n\int _0^1\log ^n(\sin \pi x)\mathrm {d}x. \end{aligned}$$
With the help of the explicit forms of \(I_n\) and \(J_n\), we deduce closed-form evaluations for a number of polylog-trigonometric definite integrals.
  相似文献   

15.
In this paper, we systematically study jump and variational inequalities for rough operators, whose research have been initiated by Jones et al. More precisely, we show some jump and variational inequalities for the families \(\mathcal T:=\{T_\varepsilon \}_{\varepsilon >0}\) of truncated singular integrals and \(\mathcal M:=\{M_t\}_{t>0}\) of averaging operators with rough kernels, which are defined respectively by
$$\begin{aligned} T_\varepsilon f(x)=\int _{|y|>\varepsilon }\frac{\Omega (y')}{|y|^n}f(x-y)dy \end{aligned}$$
and
$$\begin{aligned} M_t f(x)=\frac{1}{t^n}\int _{|y|<t}\Omega (y')f(x-y)dy, \end{aligned}$$
where the kernel \(\Omega \) belongs to \(L\log ^+\!\!L(\mathbf S^{n-1})\) or \(H^1(\mathbf S^{n-1})\) or \(\mathcal {G}_\alpha (\mathbf S^{n-1})\) (the condition introduced by Grafakos and Stefanov). Some of our results are sharp in the sense that the underlying assumptions are the best known conditions for the boundedness of corresponding maximal operators.
  相似文献   

16.
An idempotent operator E in a Hilbert space \({\mathcal {H}}\) \((E^2=1)\) is written as a \(2\times 2\) matrix in terms of the orthogonal decomposition
$$\begin{aligned} {\mathcal {H}}=R(E)\oplus R(E)^\perp \end{aligned}$$
(R(E) is the range of E) as
$$\begin{aligned} E=\left( \begin{array}{l@{\quad }l} 1_{R(E)} &{} E_{1,2} \\ 0 &{} 0 \end{array} \right) . \end{aligned}$$
We study the sets of idempotents that one obtains when \(E_{1,2}:R(E)^\perp \rightarrow R(E)\) is a special type of operator: compact, Fredholm and injective with dense range, among others.
  相似文献   

17.
18.
In this paper, we investigate the existence results for fractional differential equations of the form
$$\begin{aligned} {\left\{ \begin{array}{ll} D_{c}^{q}x(t)=f(t,x(t)) \quad t\in [0, T)\left( 0<T\le \infty \right) , \quad q \in (1,2),\\ x(0)=a_{0},\quad x^{'}(0)=a_{1}, \end{array}\right. } \end{aligned}$$
(0.1)
and
$$\begin{aligned} {\left\{ \begin{array}{ll} D_{c}^{q}x(t)=f(t,x(t)) \quad t\in [0, T), \quad q \in (0,1),\\ x(0)=a_{0}, \end{array}\right. } \end{aligned}$$
(0.2)
where \(D_{c}^{q}\) is the Caputo fractional derivative. We prove the above equations have solutions in C[0, T). Particularly, we present the existence and uniqueness results for the above equations on \([0,+\infty )\).
  相似文献   

19.
We use bounds of mixed character sums modulo a square-free integer q of a special structure to estimate the density of integer points on the hypersurface
$$\begin{aligned} f_1(x_1) + \cdots + f_n(x_n) =a x_1^{k_1} \ldots x_n^{k_n} \end{aligned}$$
for some polynomials \(f_i \in {\mathbb {Z}}[X]\) and nonzero integers a and \(k_i\), \(i=1, \ldots , n\). In the case of
$$\begin{aligned} f_1(X) = \cdots = f_n(X) = X^2\quad \text{ and }\quad k_1 = \cdots = k_n =1 \end{aligned}$$
the above hypersurface is known as the Markoff–Hurwitz hypersurface, while for
$$\begin{aligned} f_1(X) = \cdots = f_n(X) = X^n\quad \text{ and }\quad k_1 = \cdots = k_n =1 \end{aligned}$$
it is known as the Dwork hypersurface. Our results are substantially stronger than those known for general hypersurfaces.
  相似文献   

20.
Let \(b_{5}(n)\) denote the number of 5-regular partitions of n. We find the generating functions of \(b_{5}(An+B)\) for some special pairs of integers (AB). Moreover, we obtain infinite families of congruences for \(b_{5}(n)\) modulo powers of 5. For example, for any integers \(k\ge 1\) and \(n\ge 0\), we prove that
$$\begin{aligned} b_{5}\left( 5^{2k-1}n+\frac{5^{2k}-1}{6}\right) \equiv 0 \quad (\mathrm{mod}\, 5^{k}) \end{aligned}$$
and
$$\begin{aligned} b_{5}\left( 5^{2k}n+\frac{5^{2k}-1}{6}\right) \equiv 0 \quad (\mathrm{mod}\, 5^{k}). \end{aligned}$$
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号