首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Procedures which allow the correlation of velocity signals from a laser anemometer and temperature signals from a compensated, small-diameter thermocouple are described together with the error sources associated with the use of the technique in premixed flames. The digital compensation procedure includes the effect of velocity and temperature on the time constant of the thermocouple and the influence of its exposure to the solid particles required by the laser anemometer are quantified and shown to be able to cause large differences in the measured probability-density-distribution of the reaction progress variable. The technique has been used to measure the probability-density-distribution of temperatures, conditioned by the arrival of velocity signals and velocity conditioned by the temperature signal and sample results are presented to help quantify the accuracy of the measurements.  相似文献   

2.
Simultaneous 10-kHz OH-PLIF and 20-kHz two-component PIV were made in conjunction with wide-field 20-kHz flame luminescence imaging of an unconfined, swirling, lean premixed, bluff-body stabilized flame during flashback. Flashback was induced by increasing the stoichiometry or swirl number or reducing the Reynolds number. A detailed stability regime was prepared and compared to predictions. Analysis of the time-correlated flame history inside the exit nozzle during flashback and non-flashback flame events led to a new hypothesis for the flashback mechanism.  相似文献   

3.
A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ‘noisy’) flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (‘quiet’) flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.  相似文献   

4.
The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of −30 to 30 kPa for each equivalence ratio (Φ = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINOx simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated.  相似文献   

5.
Quantitative hydroxyl time-series measurements from a set of stable and extinguishing turbulent opposed-flow partially premixed CH4/air flames are used to investigate the effect of Reynolds number and fuel-side equivalence ratio on the structure of turbulent partially premixed flames. The hydroxyl (OH) integral time scale, computed from the autocorrelation function, is used to characterize OH fluctuations and is found to reach a minimum at the axial location of peak OH. Analyses of the duration of and period between bursts in the OH time series are used to examine the dynamics of flame-front motion. In general, with increasing Reynolds number (Re), the distribution in OH burst times shifts towards smaller time scales. A hydroxyl intermittency parameter is also defined from the bursts to quantify the presence or absence of OH. For flames with the same fuel-side equivalence ratio, the hydroxyl intermittency at peak OH remains almost constant when going from stable to extinguishing flames. However, histograms portray an increase in burst separation times for flames displaying occasional extinction events. Hydroxyl time series for a partially premixed flame at a fuel-side equivalence ratio of 2.0 and Re = 6650 are synthesized by using mixture-fraction simulations based on calculated state relationships for OH versus mixture fraction (f). The laminar-flamelet model is employed to explore relations between OH and f so as to predict trends in mixture-fraction time scales.“Time-Series Measurements in Turbulent Opposed-Jet Flames" is submitted for consideration as a full length article to Flow Turbulence and Combustion.  相似文献   

6.
Black body radiation from a fibre ofβ SiC can be used to investigate the temperature profile in a premixed flame. An infrared scanner determines the radiation intensity of the fibre, which is related to the fibre temperature by a calibration law. A fast time constant and excellent spatial resolution of the fibre make the method a very helpful tool to study the turbulent flames.  相似文献   

7.
Fractal analysis of turbulent premixed flame surface   总被引:3,自引:0,他引:3  
The fractal-like character of the laminar flamelet surface in turbulent premixed combustion of lean methane/air mixtures was studied by using the laser tomography technique to visualize the instantaneous flame surface in the two-dimensional section cut by the laser sheet. The fractal analysis of the surface revealed that the surface actually exhibits a self-similarity behavior in a narrow range of scale, and the value of fractal dimension can be defined. The inner cutoff scale was the laminar flame thickness, while the outer cutoff scale was the flame size. The fractal dimension was found to depend on the orientation of the section, and to increase towards downstream. It is suggested that the observed fractal-like character is not directly connected to approach flow turbulence, but should represent certain aspects of the flamelet itself.  相似文献   

8.
In this paper we demonstrate the advantages of the LES-WALE model coupled with the PDF approach to resolve a set of aerothermochemistry equations for turbulent lean premixed prevaporized combustion. The main issue is the modeling of the closure in the turbulent combustion equations. So, combustion problems involve a strong coupling between dynamic and scalar parameters. The validation is based on comparisons of three parameters: mean longitudinal velocity, fluctuation of longitudinal velocity, and length of recirculation zones. In line with what was observed by an experimental reference study, the simulation succeeds to detect the flame zone and to model the flow morphology for different equivalence ratios and inlet mass flow rates.  相似文献   

9.
 Detection of soot by laser-induced incandescence (LII) and fuel-rich (PAH containing) regions by laser-induced fluorescence (LIF) is demonstrated in a turbulent, Re=2500, ethylene gas-jet diffusion flame. Simultaneous combined LIF–LII images allow identification of regions containing PAH or soot and their relative spatial relationship. Separate LII images confirm the identity of the soot containing regions shown in the LIF–LII images. Variations in the size, structure, spatial location and intensity of the PAH and soot containing regions are shown qualitatively in the images and quantified through histograms of image intensities and spatial extents. Received: 9 September 1996/Accepted: 4 February 1997  相似文献   

10.
This paper describes an experimental study of a partially stirred reactor (PaSR). The reactor is a cubic box in which air (either pure or mixed with a tracer) is continuously injected through 12 jets situated in two opposite planes and impinging through the center. The flow in the reactor interior is well approximated as stationary, globally homogeneous and isotropic. Global properties of turbulent flow and passive scalar mixing are studied, in terms of length scales, characteristic times, spectra, etc. Particular attention has been paid to a proper determination of the mean value of the passive scalar variance dissipation rate 〈ε Z 〉, in the central quasi-homogeneous zone of the reactor.  相似文献   

11.
In order to describe the influence of strain rate on the behaviour and on the characteristics of premixed turbulent combustion, a methane-air flame stabilized by a stagnation plate is studied experimentally. The plate is set at a fixed distance from the nozzle and the strain is varied by changing the exit velocity at the nozzle. At low strain rates, the evolution of profiles of mean axial velocity along the centreline agrees with classical results, and these results are used to characterise the flame. The variation of these characteristics with parameters such as plate temperature, equivalence ratio and strain rate is investigated. At the highest strain rates, the shape of the axial velocity profiles along the stagnation line is modified. This change emphasises a critical strain rate K C that has to be considered as well as the extinction strain rate K EX. Measurements also demonstrate the existence of a virtual stagnation point that moves towards the plate as the strain rate increases. The axial and transverse fluctuating components of the velocity are analyzed along the centreline and very close to the wall. The results show the importance of the critical strain rate K C , which is linked to a drastic change in the evolution of the axial and transverse velocity fluctuations. Received: 15 January 1998/Accepted: 7 February 1999  相似文献   

12.
The interaction of a Gaussian negative pulse with a H2/O2/N2 turbulent premixed flame is examined using Direct Numerical Simulation (DNS). Transport properties and chemical kinetics are described in a very detailed manner. An extended nonlinear local Rayleigh's criterion, for laminar as well as turbulent, premixed or nonpremixed flames, is proposed. Situations in which amplification or attenuation occur are listed. Calculations of a turbulent flame are then carried out with and without an acoustic wave and results are recorded at the same time. The influence of acoustic wave/turbulent flame interaction is obtained by a simple difference. It is shown that longitudinal and transverse velocity components are perturbed by the turbulent flame. Moreover, the vorticity induced by the acoustic wave is observed to be weak. Finally, Rayleigh's criterion shows that wave amplification occurs punctually. To cite this article: A. Laverdant, D. Thévenin, C. R. Mecanique 333 (2005).  相似文献   

13.
A detailed numerical simulation of n-heptane droplets was carried out on a stationary three-dimensional configuration with complex geometry. The investigations focused on spray evaporation and dispersion within a carrier phase that featured operating conditions similar to those found in industrial applications, i.e. elevated pressure and temperature. The simulations were carried out using the Eulerian–Lagrangian approach with two-way coupling. There were two cases. The first dealt with spray characteristics within the preheated carrier phase without considering combustion. The second investigated the influence of combustion on droplet characteristics. Both cases had the same boundary conditions. The numerical simulations used two models to compute the progress variable mean reaction rate that governs the combustion process, which is captured by the Bray–Moss–Libby model.  相似文献   

14.
A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140 μm, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy–flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles.  相似文献   

15.
根据我国石油气体管道阻火器实验的国家标准(GB13347—92),对6组ⅡA类气体波纹板阻爆燃型阻火器进行了实验探究,得到了相应的阻火速度。实验结果表明:阻火器扩张比、阻火芯狭缝通道长度以及狭缝截面形状是影响阻火速度的主要因素。通过分析以上3个因素对阻火速度的影响,得出了阻火速度与阻火器基本参数的拟合公式。结果表明:阻火速度与狭缝通道的长度、扩张比的平方成正比,与狭缝截面三角形的特征尺寸成反比。  相似文献   

16.
17.
Tomographic PIV measurements in a turbulent lifted jet flame   总被引:1,自引:0,他引:1  
Measurements of instantaneous volumetric flow fields are required for an improved understanding of turbulent flames. In non-reacting flows, tomographic particle image velocimetry (TPIV) is an established method for three-dimensional (3D) flow measurements. In flames, the reconstruction of the particles location becomes challenging due to a locally varying index of refraction causing beam-steering. This work presents TPIV measurements within a turbulent lifted non-premixed methane jet flame. Solid seeding particles were used to provide the 3D flow field in the vicinity of the flame base, including unburned and burned regions. Four cameras were arranged in a horizontal plane around the jet flame. Following an iterative volumetric self-calibration procedure, the remaining disparity caused by the flame was less than 0.2 pixels. Comparisons with conventional two-component PIV in terms of mean and rms values provided additional confidence in the TPIV measurements.  相似文献   

18.
An experimental study has been carried out to investigate the interaction between propagating turbulent premixed flames and solid obstacles. The experimental rig was configured specifically to allow detailed measurements with laser-based optical diagnostics. A wall-type solid obstacle was mounted inside a laboratory-scale combustion chamber with rectangular cross-section. The flame was initiated, by igniting a combustible mixture of methane in air at the center of the closed end of the combustion chamber. The flame front development was visualized by a high-speed (9000 frame/s) digital video camera and flame images were synchronized with ignition timing and chamber pressure data. The tests were carried out with lean, stoichiometric and rich mixtures of methane in air. The images were used to calculate highly resolved temporal and spatial data for the changes in flame shape, speed, and the length of the flame front. The results are discussed in terms of the influence of mixture equivalence ratio on the flame structure and resulting overpressure. The reported data revealed significant changes in flame structure as a result of the interaction between the propagating flame front and the transient recirculating flow formed behind the solid obstacle. Combustion images show that the flame accelerates and decelerates as it impinges on the obstacle wall boundaries. It is also found that the mixture concentrations have a significant influence on the nature of the flame/solid interactions and the resulting overpressure. The highest flame speed of 40 m/s was obtained with the unity fuel–air equivalence ratio. Burning of trapped mixture behind the solid obstruction was found to be highly correlated with the flame front length and the rate of pressure rise.  相似文献   

19.
The structure of an air-propane premixed flame was studied experimentally at the lean flammability limit, using Schlieren photography synchronized with OH-imaging done with the Planar Laser Induced Fluorescence (PLIF) technique. The flame was studied in a wide range of fuel equivalence ratios. Various steps in the process of the flame destabilization were investigated, including partial lift-off, stable lift-off, and final blow-out conditions. The flame structure was visualized for each stage showing the transition from a flame held at the nozzle to a flame held by the flow structures. In order to study the latter conditions in more detail the flame was acoustically excited at the preferred mode frequency generating large, stable, coherent structures in the core region. The modified flame structure was visualized to understand the interaction between the flame and vortical flow dynamics.It is shown that for the flow conditions when the flame cannot be stabilized at the nozzle, a new anchoring point is reached at the location of the initial vortex roll-up in the jet shear layer. At this point the flow reversal and transition to turbulence produce stagnation points with relatively low local velocities and velocity gradients where the flame can be stabilized. When the flame jet is being forced at the jet most unstable frequency, large coherent structures are formed and the flame is stabilized intermittently on these vortices.  相似文献   

20.
A sub-grid scale (SGS) combustion model, which combines the artificial thickened flame (ATF) model with the flamelet generated manifold (FGM) tabulation method, is proposed. Based on the analysis of laminar flame structures, two self-contained flame sensors are used to track the diffusion and reaction processes with different spatial scales in the flame front, respectively. The dynamic formulation for the proposed SGS combustion model is also performed. Large eddy simulations (LESs) of Bunsen flame F3 are used to evaluate the different SGS combustion models. The results show that the proposed SGS model has the ability in predicting the distributions of temperature and velocity reasonably, while the predictions for the distributions of some species need further improvement. The snapshots of instantaneous normalized progress variables reveal that the flame is more remarkably and severely wrinkled at the flame tip for flame F3. More satisfactory results obtained by the dynamic model indicate that it can preserve the premixed flame propagation characteristics better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号