首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The reaction of Sm[N(TMS)(2)](2)(THF)(2) with H(2)L (L = 1,4-bis(2-hydroxy-3-tert-butyl-5-methyl-benzyl)-piperazidine) afforded [SmL(HMPA)(2)](4)·8THF 2 upon treatment with 2 equivalents of HMPA (hexamethyl phosphoric triamide). X-ray crystallographic analysis of 2 reveals a tetrametallic macrocyclic structure, which represents the first example of a crystal structure of a Sm(II) complex stabilized by heteroatom bridged bis(phenolate) ligands. Reduction of carbodiimides RNCNR (R = (i)Pr and Cy) by [SmL](2)(THF) 1, which was formed in situ by the reaction of Sm[N(TMS)(2)](2)(THF)(2) with H(2)L in THF, yielded the Sm(III) complex with an oxalamidinate ligand [LSm{(N(i)Pr)(2)CC(N(i)Pr)(2)}SmL]·THF 3 for (i)PrNCN(i)Pr and the Sm(III) complex with a diamidocarbene ligand [LSm(μ-CyNCNCy)SmL]·5.5THF 4 for CyNCNCy.  相似文献   

2.
Zhou L  Wang J  Zhang Y  Yao Y  Shen Q 《Inorganic chemistry》2007,46(14):5763-5772
The synthesis and structures of a series of lanthanide(II) and lanthanide(III) complexes supported by the amido ligand N(SiMe3)Ar were described. Several lanthanide(III) amide chlorides were synthesized by a metathesis reaction of LnCl3 with lithium amide, including {[(C6H5)(Me3Si)N]2YbCl(THF)}2.PhCH3 (1), [(C6H3-iPr2-2,6)(SiMe3)N]2YbCl(mu-Cl)Li(THF)3.PhCH3 (4), [(C6H3-iPr2-2,6)(SiMe3)N]YbCl2(THF)3 (6), and [(C6H3-iPr2-2,6)(SiMe3)N]2SmCl3Li2(THF)4 (7). The reduction reaction of 1 with Na-K alloy afforded bisamide ytterbium(II) complex [(C6H5)(Me3Si)N]2Yb(DME)2 (2). The same reaction for Sm gave an insoluble black powder. An analogous samarium(II) complex [(C6H5)(Me3Si)N]2Sm(DME)2 (3) was prepared by the metathesis reaction of SmI2 with NaN(C6H5)(SiMe3). The reduction reaction of ytterbium chloride 4 with Na-K alloy afforded monoamide chloride {[(C6H3-iPr2-2,6)(SiMe3)N]Yb(mu-Cl)(THF)2}2 (5), which is the first example of ytterbium(II) amide chloride, formed via the cleavage of the Yb-N bond. The same reduction reaction of 7 gave a normal bisamide complex [(C6H3-iPr2-2,6)(SiMe3)N]2Sm(THF)2 (8) via Sm-Cl bond cleavage. This is the first example for the steric effect on the outcome of the reduction reaction in lanthanide(II) chemistry. 5 can also be synthesized by the Na/K alloy reduction reaction of 6. All of the complexes were fully characterized including X-ray diffraction for 1-7.  相似文献   

3.
Starting material KN(H)C(6)H(3)-2,6-F(2) was prepared via a transamination reaction from KNH(2) and 2,6-F(2)C(6)H(3)NH(2) in THF and crystallized from 1,4-dioxane (diox) as the three-dimensional polymer [(diox)(1.5)K{N(H)-2,6-F(2)C(6)H(3)}.diox(0.5)](infinity) (1). The metathesis reaction of (THF)(4)CaI(2) with KN(Me)Ph in THF yields monomeric (THF)(4)Ca[N(Me)Ph](2) (2) with a nearly linear N-Ca-N moiety of 179.84(8) degrees . The metathesis reaction of (THF)(4)CaI(2) with KN(H)Mes yields trinuclear (THF)(6)Ca(3)[N(H)Mes](6) (3) with a linear Ca(3) fragment and bridging 2,4,6-trimethylphenylamido groups. The reaction of 1 with (THF)(4)CaI(2) gives dinuclear (THF)(5)Ca(2)[N(H)-2,6-F(2)C(6)H(3)](4).2THF (4) with three bridging and one terminally bound 2,6-difluorophenylamide. A similar reaction of (THF)(5)SrI(2) with KN(H)-2,6-F(2)C(6)H(3) yields dinuclear (THF)(6)Sr(2)[N(H)-2,6-F(2)C(6)H(3)](3)I.THF (5) in which the iodide anion binds terminally. This iodide ligand cannot be substituted as easily by excess KN(H)-2,6-F(2)C(6)H(3). The metathesis reaction of (THF)(5)BaI(2) with KN(H)-2,6-F(2)C(6)H(3) leads to the formation of [(THF)(2)Ba{N(H)-2,6-F(2)C(6)H(3)}(2)](infinity) (6) which crystallizes as a one-dimensional polymer with bridging 2,6-difluorophenylamide anions and additional Ba-F-bonds.  相似文献   

4.
The reaction of ScCl(3)(THF)(3) or YCl(3) in a 1:1 molar ratio under reflux for 8 h with [{Li(bdmpza)(H(2)O)}(4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [{Li(bdmpzdta)(H(2)O)}(4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] affords the corresponding complexes [MCl(2)(kappa(3)-bdmpzx)(THF)] (x = a, M = Sc (1), Y (2); x = dta, M = Sc (3), Y (4); x = e, M = Sc (5), Y (6)). However, when the reaction was carried out for 1 h under reflux between ScCl(3)(THF)(3) and [{Li(bdmpzdta)(H(2)O)}(4)], a new anionic complex [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) was obtained. Reaction of [{Li(bdmpza)(H(2)O)}(4)] with YCl(3) in a 2:1 molar ratio under reflux for 8 h gave the complex [YCl(kappa(3)-bdmpza)(2)] (8). The same reaction, but with the lithium compound [{Li(bdmpzdta)(H(2)O)}(4)], led to the formation of an anionic complex [Li(THF)(4)][YCl(3)(kappa(3)-bdmpzdta)] (9). The X-ray crystal structures of 7 and 9 were established. Finally, the addition of 1 equiv of [{Li(bdmpza)(H(2)O)}(4)] or [{Li(bdmpzdta)(H(2)O)}(4)] to a solution of YCl(3) in THF under reflux, followed by the addition of 1 equiv of 1,10-phenanthroline, resulted in the formation of the corresponding complexes [YCl(2)(kappa(3)-bdmpzx)(phen)] (x = a (10), x = dta (11)). These complexes are the first examples of group 3 metals stabilized by heteroscorpionate ligands. In addition, we have explored the reactivity of some of these complexes with alcohols and amides. For example, the direct reaction of [YCl(2)(kappa(3)-bdmpza)(THF)] (2) with several alcohols gave the alkoxide complexes [YCl(kappa(3)-bdmpza)(OR)] (R = Et (12), iPr (13)). Finally, the reaction between [ScCl(2)(kappa(3)-bdmpzdta)(THF)] (3) or [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) and LiN(SiMe(3))(2).Et(2)O in 1:1 and 1:2 molar ratios gave rise to the complexes [ScCl(kappa(3)-bdmpzdta){N(SiMe(3))(2)}] (14) and [Sc(kappa(3)-bdmpzdta){N(SiMe(3))(2)}(2)] (15), respectively.  相似文献   

5.
Hao J  Li J  Cui C  Roesky HW 《Inorganic chemistry》2011,50(16):7453-7459
Reaction of the aluminum hydroxide LAl(OH)[C(Ph)CH(Ph)] (1, L = HC[(CMe)(NAr)](2), Ar = 2,6-iPr(2)C(6)H(3)) with Y(CH(2)SiMe(3))(3)(THF)(2) yielded the oxo-bridged heterobimetallic yttrium dialkyl complex LAl[C(Ph)CH(Ph)](μ-O)Y(CH(2)SiMe(3))(2)(THF)(2) (2). Alkane elimination reaction of 2 with 2-(imino)pyrrole [NN]H ([NN]H = 2-(ArN═CH)-5-tBuC(4)H(2)NH) afforded the yttrium monoalkyl complex LAl[C(Ph)CH(Ph)] (μ-O)Y(CH(2)SiMe(3))[NN](THF)(2) (5). Alternatively, 5 can be prepared in high yield by reaction of 1 with [NN]Y(CH(2)SiMe(3))(2)(THF)(2) (3). The analogous samarium alkyl complex LAl[C(Ph)CH(Ph)](μ-O)Sm(CH(2)SiMe(3))[NN](THF)(2) (6) was prepared similarly. Reactions of 5 and 6 with 1 equiv of iPrOH yielded the corresponding alkoxyl complexes 7 and 8, respectively. The molecular structures of 3, 6, and 8 have been determined by X-ray single-crystal analysis. Complexes 2, 3, 5, 7, and 8 have been investigated as lactide polymerization initiators. The heterobimetallic alkoxyl 8 is highly active to yield high molecular weight (M(n) = 6.91 × 10(4)) polylactides with over 91% conversion at the lactide-to-initiator molar ratio of 2000.  相似文献   

6.
The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP(2-)) are described. Reaction of (C(5)H(5))(3)Ln(THF) with MBMPH(2) in a 1 : 1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C(5)H(5))Ln(MBMP)(THF)(n) (Ln = La, n = 3 (); Ln = Yb (), Y (), n = 2) in nearly quantitative yields. The residual C(5)H(5)(-) groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH(2) in a 1 : 0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(mu-MBMP)(2)La(THF)(2) () in good isolated yield; whereas complexes and reacted with MBMPH(2) under the same conditions to give (MBMP)Ln(MBMPH)(THF)(2) (Ln = Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt(3) in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)(2)(DME)][(MBMP)(2)Yb(THF)(2)] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt(2) in toluene gave a ligand redistributed complex [(mu-MBMP)Zn(THF)](2) () in reasonable isolated yield. Similar reaction of complex with ZnEt(2) also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)(2)Li(THF)(2)] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.  相似文献   

7.
The U(III) mixed-sandwich compound [U(eta-C5Me4H)(eta-C8H6{SiiPr3-1,4}2)(THF)] 1 may be prepared by sequential reaction of UI3 with K[C5Me4H] in THF followed by K2[C8H6{SiiPr3-1,4}2]. 1 reacts with carbon monoxide at -30 degrees C and 1 bar pressure in toluene solution to afford the crystallographically characterized dimer [(U(eta-C8H6{SiiPr3-1,4}2)(eta-C5Me4H)]2(mu-eta2: eta2-C4O4) 2, which contains a bridging squarate unit derived from reductive cyclotetramerization of CO. DFT computational studies indicate that addition of a 4th molecule of CO to the model deltate complex [U(eta-COT)(eta-Cp)]2(mu-eta1: eta2-C3O3)] to form the squarate complex [U(eta-COT)(eta-Cp)]2(mu-eta2: eta2-C4O4)] is exothermic by 136 kJ mol-1.  相似文献   

8.
Treatment of the recently reported potassium salt [K(thf)(n)][N(PPh(2))(2)] (n=1.25, 1.5) with anhydrous yttrium or lanthanide trichlorides in THF leads after crystallization from THF/n-pentane (1:2) to the monosubstituted diphosphanylamide complexes [LnCl(2)[(Ph(2)P)(2)N](thf)(3)] (Ln=Y, Sm, Er, Yb). The single-crystal X-ray structures of these complexes show that the metal atoms are surrounded by seven ligands in a distorted pentagonal bipyramidal arrangement, in which the chlorine atoms are located in the apical positions. The diphosphanylamide ligand is always eta(2)-coordinated through the nitrogen atom and one phosphorus atom. Further reaction of [SmCl(2)[(Ph(2)P)(2)N](thf)(3)] with K(2)C(8)H(8) or reaction of [LnI(eta(8)-C(8)H(8))(thf)(3)] with [K(thf)(n)][N(PPh(2))(2)] in THF gives the corresponding cyclooctatetraene complexes [Ln[(Ph(2)P)(2)N](eta(8)-C(8)H(8))(thf)(2)] (Ln=La, Sm). The single crystals of these compounds contain enantiomerically pure complexes. Both compounds adopt a four-legged piano-stool conformation in the solid state. The structures of the A and the C enantiomers were established by single-crystal X-ray diffraction. The more soluble bistrimethylsilyl cyclooctatetraene complex [Y[(Ph(2)P)(2)N](eta(8)-1,4-(Me(3)Si)(2)C(8)H(6))(thf)(2)] was obtained by transmetallation of Li(2)[1,4-(Me(3)Si)(2)C(8)H(6)] with anhydrous yttrium trichloride in THF followed by the addition of one equivalent of [K(thf)(n)][N(PPh(2))(2)]. The (89)Y NMR signal of the complex is split up into a triplet, supporting other observations that the phosphorus atoms are chemically equivalent in solution and, thus, dynamic behavior of the ligand in solution can be anticipated.  相似文献   

9.
Yao Y  Xu X  Liu B  Zhang Y  Shen Q  Wong WT 《Inorganic chemistry》2005,44(14):5133-5140
A convenient method for the synthesis of lanthanide alkoxo complexes supported by a carbon-bridged bis(phenolate) ligand 2,2'-methylenebis(6-tert-butyl-4-methylphenoxo) (MBMP2-) is described. The reaction of (C5H5)3Nd with MBMPH2 in a 1:1 molar ratio in THF gave the bis(phenolato)lanthanide complex (C5H5)Nd(MBMP)(THF)2 (1) in a nearly quantitative yield. Complex 1 further reacted with 1 equiv of 2-propanol in THF to yield the bis(phenolato)lanthanide isopropoxide [(MBMP)2Nd(mu-OPr(i))(THF)2]2 (2) in high yield. Complex 2 can also be synthesized by the direct reaction of (C5H5)3Nd with MBMPH2 in a 1:1 molar ratio and then with 1 equiv of 2-propanol in situ in THF. Thus, the analogue bis(phenolato)lanthanide alkoxides [(MBMP)2Ln(mu-OR)(THF)2]2 [R = Pr(i), Ln = Yb (3); R = Me, Ln = Nd (4), Yb (5); R = CH2Ph, Ln = Nd (6), Yb (7)] were obtained by the reactions of (C5H5)3Ln (Ln = Nd, Yb) with MBMPH2 and then with 2-propanol, methanol, or benzyl alcohol, respectively. The ytterbium complex {[(MBMP)2Yb(THF)2]2(mu-OCH2Ph)(mu-OH)} (8) was also isolated as a byproduct. The single-crystal structural analyses of complexes 1-3 and 8 revealed that the coordination geometry around lanthanide metal can be best described as a distorted tetrahedron in complex 1 and as a distorted octahedron in complexes 2, 3, and 8. A O-H...Yb agostic interaction was observed in complex 8. Complexes 2-7 were shown to be efficient catalysts for the controlled polymerization of epsilon-caprolactone.  相似文献   

10.
The preparation of divalent Mo complexes of dipyrrolide dianions was carried out by reacting Mo(2)(acetate)(4) with the dipotassium salts of Ph(2)C(2-C(4)H(3)NH)(2) and 2-[1,1-bis(1H-pyrrol-2-yl)ethyl]pyridine. The two reactions respectively afforded the diamagnetic [[Ph(2)C(C(4)H(3)N)(2)](2)Mo(2)(OAc)(2)[K(THF)(3)][K(THF)]].THF (1) and [[(2-C(5)H(4) N)(CH(3))C(2-C(4)H(3)N)(2)]Mo(OAc)[K(THF)]](2).THF (2). Both compounds retained two acetate units in the dimetallic structure. Conversely, the reaction of Me(8)Mo(2)Li(4)(THF)(4) with Et(2)C(2-C(4)H(3)NH)(2) afforded the paramagnetic dimer [[Et(2)C(C(4)H(3)N)(2)](4)Mo(2)Li(2)][Li(THF)(4)](2).0.5THF (3). The paramagnetism is most likely caused by the 45 degree rotation of the two Mo(dipyrrolide) units with respect to each other and which, in turn, is caused by the presence of two lithium cations in the molecular structure.  相似文献   

11.
The cyclostibane R(4)Sb(4)(1)(R = 2-(Me(2)NCH(2))C(6)H(4)) was synthesized by reduction of RSbCl(2) with Mg in THF or with Na in liquid NH(3). The reaction of 1 with [W(CO)(5)(THF)] gives the stibinidene complex RSb[W(CO)(5)](2)(2). RSbCl(2) and (RSbCl)(2)E [E = O (6), E = S (8)] react with KOH or Na(2)S in toluene/water to give the heterocycles (RSbE)(n)[E = O, n= 3 (3); E = S, n= 2 (4)]. The chalcogeno-bridged compounds of the type (RSbCl)(2)E [E = O (6), E = S (8)] were synthesized by reaction of RSbCl(2) with KOH or Na(2)S in toluene/water, but also by reaction of RSbCl(2) with the heterocycles (RSbE)(n). The compounds (RSbI)(2)O (7) and (RSbBr)(2)S (9) were prepared via halogen-exchange reactions between (RSbCl)(2)E and NaI (E = O) or KBr (E = S) or by reactions between RSbI(2) and KOH or RSbBr(2) and Na(2)S. The reaction of cyclo-(RSbS)(2) with W(CO)(5)(THF) in THF results in trapping of the cis isomer in cyclo-(RSbS)(2)[W(CO)(5)](5). The solution behaviour of the compounds was investigated by (1)H and (13)C NMR spectroscopy. The molecular structures of compounds 1-7 and 9 were determined by single-crystal X-ray diffraction.  相似文献   

12.
Lutetium alkyl complexes [Lu(L)(CH(2)SiMe(3))(THF)(n)], which contain a sulfur-linked bis(phenolato) ligand such as 2,2'-thiobis(6-tert-butyl-4-methylphenolate) (L=tbmp, 1) or 1,4-dithiabutanediyl-bis(6-tert-butyl-4-methylphenolate) (L=etbmp, 2), were isolated from the reaction of the lutetium tris(alkyl) complex [Lu(CH(2)SiMe(3))(3)(THF)(2)] with H(2)L. The monomeric structures of these complexes were confirmed by X-ray diffraction studies, showing distorted octahedral geometry around the metal centre. The reaction of [Lu(tbmp)(CH(2)SiMe(3))(THF)(2)] (1) with alcohols ROH (R=iPr, CHPh(2), CPh(3)) results in the formation of the corresponding alkoxide complexes [Lu(tbmp)(OR)(THF)(n)] (4-6). With PhSiH(3) hydride complexes [Lu(L)(mu-H)(THF)(n)](2) (L=tbmp, 7; etbmp, 8) have been prepared in moderate to good yields. They adopt a dimeric form in the solid state as revealed by the X-ray crystal structure of 7. The reactivity of the hydride complexes and their catalytic activity in the ring-opening polymerisation of L-lactide and the hydrosilylation of alkenes are also discussed.  相似文献   

13.
The ambidentate dianions [(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu](2)(-) (5a, E = S; 5b, E = Se) are obtained as their disodium and dipotassium salts by the reaction of cis-[(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (6a, E = S; 6b, E = Se), with 2 equiv of MN(SiMe(3))(2) (M = Na, K) in THF at 23 degrees C. The corresponding dilithium derivative is prepared by reacting 6a with 2 equiv of (t)BuLi in THF at reflux. The X-ray structures of five complexes of the type [(THF)(x)()M](2)[(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu] (9, M = Li, E = S, x = 2; 11a/11b, M = Na, E = S/Se, x = 2; 12a, M = K, E = S, x = 1; 12b, M = K, E = Se, x = 1.5) have been determined. In the dilithiated derivative 9 the dianion 5a adopts a bis (N,S)-chelated bonding mode involving four-membered LiNPS rings whereas 11a,b and 12a,b display a preference for the formation of six-membered MNPNPN and MEPNPE rings, i.e., (N,N' and E,E')-chelation. The bis-solvated disodium complexes 11a,b and the dilithium complex 9 are monomeric, but the dipotassium complexes 12a,b form dimers with a central K(2)E(2) ring and associate further through weak K.E contacts to give an infinite polymeric network of 20-membered K(6)E(6)P(4)N(4) rings. The monoanions [(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu)](-) (E = S, Se) were obtained as their lithium derivatives 8a and 8b by the reaction of 1 equiv of (n)BuLi with 6a and 6b, respectively. An X-ray structure of the TMEDA-solvated complex 8a and the (31)P NMR spectrum of 8b indicate a N,E coordination mode. The reaction of 6b with excess (t)BuLi in THF at reflux results in partial deselenation to give the monolithiated P(III)/P(V) complex [(THF)(2)Li[(t)BuN(Se)P(mu-N(t)Bu)(2)PN(H)(t)Bu]] 10, which adopts a (N,Se) bonding mode.  相似文献   

14.
Treatment of Cp(3)Er with one equivalent of benzimidazole-2-thiol (H(2)Bzimt) in THF affords the monoanionic HBzimt(-) complex Cp(2)Er(η(2)-HBzimt)(THF)(2) (1). Reaction of Cp(3)Yb with two equivalents of H(2)Bzimt gives complex CpYb(η(2)-HBzimt)(2)(THF) (2) at room temperature. Treatment of Cp(3)Ln with three equivalents of H(2)Bzimt in reflux THF affords the homoleptic Ln(η(2)-HBzimt)(3)(THF)(2) (Ln = Er (3), Y (4)). Cp(3)Ln reacts with 0.5 equivalents of H(2)Bzimt to afford the dianionic Bzimt(2-) complexes [(Cp(2)Ln)(THF)](2)(μ-Bzimt) (Ln = Yb (5), Er (6), Dy (7), Y (8)) in good yields, in which the Bzimt(2-) ligand bridges the two metals in an μ-η(2):η(2) coordination mode. Interestingly, controlled hydrolysis of complexes Cp(2)Ln(η(2)-HBzimt)(THF)(2), CpLn(η(2)-HBzimt)(2)(THF) and [(Cp(2)Ln)(THF)](2)(μ-Bzimt) produces the same tetranuclear complexes [CpLn(μ(3)-OH)(μ-η(1):η(2)-HBzimt)](4) (Ln = Yb (9), Er (10), Y (11)), indicating that the hydrolysis selectivity greatly depends on the number of coordinated cyclopentadienyl groups. All complexes were characterized by elemental analysis, spectroscopic properties and X-ray single crystal diffraction analysis.  相似文献   

15.
Reaction of YI(3)(THF)(3.5) with one equivalent of the potassium beta-diketiminate (BDI) complex [HC{C(CH(3))NAr}(2)K] (Ar = 2,6-Pr(i)(2)C(6)H(3)) affords the monomeric, mono-substituted yttrium BDI complex [HC{C(CH(3))NAr}(2)YI(2)(THF)] in good yield. Reaction of with DME affords [HC{C(CH(3))NAr}(2)YI(2)(DME)] in quantitative yield, which is monomeric also. Reaction of the primary terphenyl phosphane Ar*PH(2) (Ar* = 2,6-(2,4,6-Pr(i)(3)C(6)H(2))(2)C(6)H(3)) with potassium hydride, and recrystallisation from hexane, affords the potassium primary terphenyl phosphanide complex [{Ar*P(H)K(THF)}(2)] in high yield. Compound is dimeric in the solid state, constructed around a centrosymmetric K(2)P(2) four-membered ring, the coordination sphere of potassium is supplemented with an eta(6) K[dot dot dot]C(aryl) interaction. The reaction of with one molar equivalent of in THF affords the THF ring-opened compound [HC{C(CH(3))NAr}(2)Y{O(CH(2))(4)P(H)Ar*}(I)(THF)]. Compound is formed as a mixture of endo(OR) and exo(OR) isomers (: = approximately 2 : 1) which may be separated by fractional crystallisation from hexane-toluene to give pure . Attempted alkylation of with two equivalents of KCH(2)Si(CH(3))(3) affords the potassium yttriate complex [Y{micro-eta(5):eta(1)-ArNC(CH(3))[double bond, length as m-dash]CHC([double bond, length as m-dash]CH(2))NAr}(2)K(DME)(2)] in moderate yield; contains two dianionic dianilide ligands, which are derived from C-H activation of a backbone methyl group, each bonded eta(5) to yttrium in the solid state. The reaction of with one equivalent of KC(8) affords [{HC(C[CH(3)]NAr)(2)YI(micro-OCH(3))}(2)], derived from C-O bond activation of DME, as the only isolable product in very low yield. Compounds , , , , , and have been characterised by single crystal X-ray diffraction, NMR spectroscopy and CHN microanalyses.  相似文献   

16.
The deprotonation of the tripyrrole MeTPH(2) [MeTPH(2) = 2,5-[(2-pyrrolyl)(C(6)H(5))2C](2)(MeNC(4)H(2))], containing one N-methylated pyrrolyl ring, was carried out with 2 equiv of KH. The corresponding dipotassium salt reacted with VCl(3)(THF)(3) to afford the complex [(MeTP)VCl(THF)].THF (1). While the two lateral pyrrolide rings are sigma-bonded, the central one is perpendicularly oriented in a sort of pi-fashion. However, the bond distances clearly indicated that only the quaternized N atom is forming a bonding contact. Subsequent reduction of 1 with Na yielded the corresponding divalent complex [(MeTP)V(THF)].(C(7)H(8))(0.5) (2) where the central N-methylated ring adopted a more regular pi-orientation. When treated with a strong Lewis acid (AlMe(3)), THF was extracted from the vanadium coordination sphere, forming the dinuclear dinitrogen complex [(MeTP)V(mu-N(2))](2).(C(7)H(8))(2.9) (3). Reduction of 3 with potassium graphite gave cleavage of dinitrogen, affording the mixed-valent nitride-bridged complex [(MeTP)V(mu-N)](2).(THF) (4).  相似文献   

17.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   

18.
The addition of 2 equiv of N,N',N' '-triisopropylguanidine (guanH(2)) to Zr(CH(2)Ph)(4) produced the bis(guanidinato)bis(benzyl)zirconium complex [((i)PrNH)C(N(i)Pr)(2)](2)Zr(CH(2)Ph)(2) (1). The mono(guanidinato) complex [((i)PrN)(2)C(NH(i)Pr)]ZrCl(3) (2) was accessible by the reaction of 2 equiv of guanH(2) with ZrCl(4). Guanidinium hydrochloride, [C(NH(i)Pr)(3)]Cl, is a byproduct of this reaction. When crystallized from THF, complex 2 was isolated as the THF adduct [((i)PrNH)C(N(i)Pr)(2)]ZrCl(3)(THF) (2-THF). The mixed cyclopentadienyl guanidinato complex [eta(5)-1,3-(Me(3)Si)(2)C(5)H(3)][((i)PrNH)C(N(i)Pr)(2)]ZrCl(2) (3) was prepared by treatment of [1,3-(Me(3)Si)(2)C(5)H(3)]ZrCl(3) with the in situ generated lithium triisopropylguanidinate salt. The reaction of guanH(2) with [1,3-(Me(3)Si)(2)C(5)H(3)]ZrMe(3) affords the dimethyl derivative [eta(5)-1,3-(Me(3)Si)(2)C(5)H(3)][((i)PrNH)C(N(i)Pr)(2)]ZrMe(2) (4). Definitive evidence for the molecular structures of these products is provided through single-crystal X-ray characterization of 1, 2-THF, and 3, which are presented. The extent of pi delocalization within the guanidinato ligand is discussed in the context of the metrical parameters obtained from these structural studies.  相似文献   

19.
The coordination chemistry of the 2,3-dimethylindolide anion (DMI), (Me(2)C(8)H(4)N)(-), with potassium, yttrium, and samarium ions is described. In the potassium salt [K(DMI)(THF)](n), 1, prepared from Me(2)C(8)H(4)NH and KH in THF, the dimethylindole anion binds and bridges potassium ions in three different binding modes, namely eta(1), eta(3), and eta(5), to form a two-dimensional extended structure. In the dimethoxyethane (DME) adduct [K(DMI)(DME)(2)](2), 2, prepared by crystallizing a sample of 1 from DME, DMI exists as a mu-eta(1):eta(1) ligand. Compound 1 reacts with SmI(2)(THF)(4) in THF to form the distorted octahedral complex trans-(DMI)(2)Sm(THF)(4), 3, in which the dimethyindolide anions are bound in the eta(1) mode to samarium. Reaction of 2,3-dimethylindole with Y(CH(2)SiMe(3))(3)(THF)(2) afforded the amide complex (DMI)(3)Y(THF)(2), 4, in which the dimethylindolide anions are also bound in the eta(1) mode to yttrium. Compound 1 also reacts with (C(5)Me(5))(2)LnCl(2)K(THF)(2) (Ln = Sm, Y) to form unsolvated amide complexes (C(5)Me(5))(2)Ln(DMI) (Ln = Sm, 5; Y, 6), in which DMI attaches primarily through nitrogen, although the edge of the arene ring is oriented toward the metals at long distances.  相似文献   

20.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号