首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 695 毫秒
1.
The properties of amphiphilic block copolymer membranes can be tailored within a wide range of physical parameters. This makes them promising candidates for the development of new (bio)sensors based on solid-supported biomimetic membranes. Here we investigated the interfacial adsorption of polyelectrolyte vesicles on three different model substrates to find the optimum conditions for formation of planar membranes. The polymer vesicles were made from amphiphilic ABA triblock copolymers with short, positively charged poly(2,2-dimethylaminoethyl methacrylate) (PDMAEMA) end blocks and a hydrophobic poly( n-butyl methacrylate) (PBMA) middle block. We observed reorganization of the amphiphilic copolymer chains from vesicular structures into a 1.5+/-0.04 nm thick layer on the hydrophobic HOPG surface. However, this film starts disrupting and dewetting upon drying. In contrast, adsorption of the vesicles on the negatively charged SiO2 and mica substrates induced vesicle fusion and formation of planar, supported block copolymer films. This process seems to be controlled by the surface charge density of the substrate and concentration of the block copolymers in solution. The thickness of the copolymer membrane on mica was comparable to the thickness of phospholipid bilayers.  相似文献   

2.
This study addresses problems encountered with an emulsion/membrane bioreactor. In this reactor, enzyme- (lipase) catalyzed hydrolysis in an emulsion was combined with two in-line separation steps. One is carried out with a hydrophilic membrane, to separate the water phase, the other with a hydrophobic membrane, to separate the oil phase. In the absence of enzyme, sunflower oil/water emulsions with an oil fraction between 0.3 and 0.7 could be separated with both membranes operating simultaneously. However, two problems arose with emulsions containing lipase. First, the flux through both the hydrophilic and the hydrophobic membranes decreased with exposure to the enzyme. Second, the hydrophobic membrane showed a loss of selectivity demonstrated by permeation of both the oil phase and the water phase through the hydrophobic membrane at low transmembrane pressure. These phenomena can be explained by protein (i.e. lipase) adsorption to the polymer surface within the pores of the membrane. It was proven that lipase was present at the hydrophilic membrane and that this, in part, explains the flux decrease of the hydrophilic membrane. To prevent the observed loss of selectivity with exposure to protein, the hydrophobic polypropylene membrane (Enka) was modified with block copolymers of propylene oxide (PO) and ethylene oxide (EO). These block copolymers act as a steric hindrance for proteins that come near the surface. The modification was successful: After 10 days of continuous operation the minimum transmembrane pressure at which water could permeate through an F 108-modified membrane was 0.5 bar, the same value as that observed in the beginning of the experiment. This indicates that loss of selectivity due to protein adsorption is prevented by the modification of the membrane.  相似文献   

3.
Sulfonated fluorinated multiblock copolymers based on high performance polymers were synthesized and evaluated for use as proton exchange membranes (PEMs). The multiblock copolymers consist of fully disulfonated poly(arylene ether sulfone) and partially fluorinated poly(arylene ether ketone) as hydrophilic and hydrophobic segments, respectively. Synthesis of the multiblock copolymers was achieved by a condensation coupling reaction between controlled molecular weight hydrophilic and hydrophobic oligomers. The coupling reaction could be conducted at relatively low temperatures (e.g., 105 °C) by utilizing highly reactive hexafluorobenzene (HFB) as a linkage group. The low coupling reaction temperature could prevent a possible trans‐etherification, which can randomize the hydrophilic‐hydrophobic sequences. Tough ductile membranes were prepared by solution casting and their membrane properties were evaluated. With similar ion exchange capacities (IECs), proton conductivity and water uptake were strongly influenced by the hydrophilic and hydrophobic block sequence lengths. Conductivity and water uptake increased with increasing block length by developing nanophase separated morphologies. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments revealed that the connectivity of the hydrophilic segments was enhanced by increasing the block length. The systematic synthesis and characterization of the copolymers are reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 214–222, 2010  相似文献   

4.
To improve the proton conductivity of sulfonated poly(ether ether ketone)s (SPEEK) with low sulfonated degrees, a series of block SPEEK copolymers were prepared by a two-stage one pot process: first the hydrophobic block was prepared with the desired length, then the monomers for the hydrophilic block were added to the first reactive flask to form block copolymers. Membranes were cast from their DMF solutions, and characterized by determining the ion-exchange capacity, water uptake, proton conductivity and mechanical properties. Block-3 with the longer hydrophobic chain shows enhanced performance than the random one in usage for PEM. SAXS was employed to investigate the microstructure effects on the above properties. Larger ionic cluster size and larger proton transport channel in block-3 SPEEK membranes are detected from the result of SAXS. It is believed that this microstructure feature attributes to the enhanced proton conductivity values of block-3 membrane at low IEC.  相似文献   

5.
从分子结构设计出发,采用自由基聚合、醚化、酯化、原子转移自由基聚合(ATRP)、可逆加成断裂链转移自由基聚合(RAFT)等方法合成了一系列具有不同分子结构(包括接枝、嵌段、交替、超支化等)和链形态(包括直链、梳状、哑铃状、链球状等)的两亲性共聚物,并对这些聚合物进行了谱学表征和性能测试.将这些两亲性共聚物与聚合物膜材料(包括聚偏氟乙烯、聚氯乙烯、聚砜、聚醚砜、聚醚砜酮等)进行溶液共混,通过相转化法制备共混膜,在成膜热力学和动力学分析的基础上,对共混膜的结构和性能进行调控.研究发现,两亲性共聚物在成膜过程中自发地向膜表面迁移富集,并进行自组装,在膜表面形成两亲性共聚物包膜,显著改善了聚合物多孔膜的亲水性和抗污染性能.此外,两亲性共聚物中的功能基团还可赋予共混膜某些功能特性,如生物相容性、环境响应性(pH、温度敏感性)、酶活性等.  相似文献   

6.
The morphology of giant vesicles composed of amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid) random block copolymers, PMAA-b-P(MMA-r-MAA), was effectively controlled by manipulating the hydrophobic-hydrophilic balance of the P(MMA-r-MAA) blocks through the self-assembly induced by the nitroxide-mediated photo-controlled/living radical polymerization in an aqueous methanol solution. The morphology was transformed from spherical vesicles into fibers and finally into membranes as the molar ratio of the MAA units in the hydrophobic P(MMA-r-MAA) block increased at a constant block length. The membrane morphology reverted to spherical vesicles by exchanging the MMA units with more hydrophobic isopropyl methacrylate units at a constant MAA ratio. These morphology transitions were accounted for by the change in the critical packing shape of the random block copolymers based on the variation in the extent of the hydrophobic block chains.  相似文献   

7.
Anion conductive aromatic multiblock copolymers, poly(arylene ether)s containing quaternized ammonio-substituted fluorene groups, were synthesized via block copolycondensation of fluorene-containing (later hydrophilic) oligomers and linear hydrophobic oligomers, chloromethylation, quaternization, and ion-exchange reactions. The ammonio groups were selectively introduced onto the fluorene-containing units. The quaternized multiblock copolymers (QPEs) produced ductile, transparent membranes. A well-controlled multiblock structure was responsible for the developed hydrophobic/hydrophilic phase separation and interconnected ion transporting pathway, as confirmed by scanning transmission electron microscopic (STEM) observation. The ionomer membranes showed considerably higher hydroxide ion conductivities, up to 144 mS/cm at 80 °C, than those of existing anion conductive ionomer membranes. The durabilities of the QPE membranes were evaluated under severe, accelerated-aging conditions, and minor degradation was recognized by (1)H NMR spectra. The QPE membrane retained high conductivity in hot water at 80 °C for 5000 h. A noble metal-free direct hydrazine fuel cell was operated with the QPE membrane at 80 °C. The maximum power density, 297 mW/cm(2), was achieved at a current density of 826 mA/cm(2).  相似文献   

8.
利用耗散粒子动力学模拟方法, 研究了杂臂星型嵌段共聚物Am(Bn)2在溶液中自组装形成囊泡的行为. 主要分析了自组装过程、亲水分枝和疏水分枝的长度及分子构型对组装结构的影响. 结果表明, 杂臂星型聚合物在溶液中会自组装形成碟状胶束, 之后弯曲闭合形成囊泡. 当亲水部分的分枝较短时, 易于形成囊泡结构; 在可形成囊泡结构的条件下, 双分子层囊泡膜的厚度随分枝长度的增加而增加. 与构成相近的线型嵌段共聚物相比, 杂臂星型嵌段共聚物更易形成囊泡结构, 且形成的囊泡结构较薄.  相似文献   

9.
A new series of sulfonated multiblock copoly(ether sulfone)s applicable to proton exchange membrane fuel cells was synthesized. The multiblock copolymers were synthesized by the nucleophilic aromatic substitution of hydroxyl‐terminated oligomers in the presence of highly reactive decafluorobiphenyl (DFB) as a chain extender. Because of the high reactivity of DFB, the ether–ether interchange reaction, which could lead to a randomized polymer architecture, was prevented, and multiblock copolymers with high molecular weights were easily produced. The multiblock copolymers gave tough, flexible, and transparent membranes by solution casting. The ion exchange capacity values could be easily controlled by changing the sulfonated block ratios in the copolymers. The resulting membranes demonstrated good oxidative and dimensional stability and significantly higher proton conductivity than sulfonated random poly(ether sulfone) copolymers. The morphologies of the membranes were investigated by tapping mode atomic force microscopy, which showed that the multiblock membranes had a clear hydrophilic/hydrophobic separated structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3947–3957, 2008  相似文献   

10.
Nanophase‐separated, hydrophilic–hydrophobic multiblock copolymers are promising proton‐exchange‐membrane materials because of their ability to form various morphological structures that enhance transport. A series of poly(2,5‐benzophenone)‐activated, telechelic aryl fluoride oligomers with different block molecular weights were successfully synthesized by the Ni(0)‐catalyzed coupling of 2,5‐dichlorobenzophenone and the end‐capping agent 4‐chloro‐4′‐fluorobenzophenone. These telechelic oligomers (hydrophobic) were then copolymerized with phenoxide‐terminated, disulfonated poly(arylene ether sulfone)s (hydrophilic) by nucleophilic, aromatic substitution to form hydrophilic–hydrophobic multiblock copolymers. High‐molecular‐weight multiblock copolymers with number‐average block lengths ranging from 3000 to 10,000 g/mol were successfully synthesized. Two separate glass‐transition temperatures were observed via differential scanning calorimetry in the transparent multiblock copolymer films when each block length was longer than 6000 g/mol. Tapping‐mode atomic force microscopy also showed clear nanophase separation between the hydrophilic and hydrophobic domains and the influence of the block length as it increased from 6000 to 10,000 g/mol. Transparent and creasable films were solvent‐cast and exhibited moderate proton conductivity and low water uptake. These copolymers are promising candidates for high‐temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 284–294, 2007  相似文献   

11.
Block and random PEGylated copolymers of poly(ethylene glycol) methacrylate (PEGMA) and polystyrene (PS) were synthesized with a controlled polydispersity using an atom transfer radical polymerization method and varying molar mass ratios of PS/PEGMA. Two types of PEGylated copolymers were self-assembly coated onto the surface of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes for enhancing biofouling resistance. It was found that the adsorption capacities of random copolymers on PVDF membranes were all higher than those of block copolymers. However, the specific and overall protein resistance of bovine serum albumin (BSA) on PVDF membranes coated with block copolymers was much higher than that with random copolymers. The increase in styrene content in copolymer increased the amount of polymer coating on the membrane, and the increase in PEGMA content enhanced the protein resistance of membranes. The optimum PS/PEGMA ratio was found to be close to 2 for the best resistance of protein adsorption and bacterial adhesion on the PEGylated diblock copolymer-coated membranes. The PVDF membrane coated with such a copolymer owned excellent biofouling resistance to BSA, humic acid, negatively surface charged bacteria E. coli, and positively surface charged bacteria S. maltophilia.  相似文献   

12.
A series of block copoly(arylene ether)s containing pendant superacid groups were synthesized, and their properties were investigated for fuel cell applications. Two series of telechelic oligomers, iodo‐substituted oligo(arylene ether ketone)s and oligo(arylene ether sulfone)s, were synthesized. The degree of oligomerization and the end groups were controlled by changing the feed ratio of the monomers. The nucleophilic substitution polymerization of the two oligomers provided iodo‐substituted precursor block copolymers. The iodo groups were converted to perfluorosulfonic acid groups via the Ullmann coupling reaction. The high degree of perfluorosulfonation (up to 83%) was achieved by optimizing the reaction conditions. Tough and bendable membranes were prepared by solution casting. The ionomer membranes exhibited characteristic hydrophilic/hydrophobic phase separation with large hydrophilic clusters (ca. 10 nm), which were different from that of our previous random copolymers with similar molecular structure. The block copolymer structure was found to be effective in improving the proton‐conducting behavior of the superacid‐modified poly(arylene ether) ionomer membranes without increasing the ion exchange capacity (IEC). The highest proton conductivity was 0.13 S/cm at 80 °C, 90% relative humidity, for the block copolymer ionomer membrane with IEC = 1.29 mequiv/g. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
To achieve stable polymer electrolyte membranes (PEMs) with efficient ionic nano-channels, novel fully aromatic AB or ABA copolymers composed of poly(fluorenyl ether sulfone biphenyl)s (PFESBs) and poly(arylene ether sulfone)s (PAESs) were synthesized via polymerization and post-sulfonation methods, and were explored as fuel cell membranes. The structural analysis of synthesized copolymers and the corresponding membranes were ascertained by gel permeation chromatography (GPC), Fourier transform infrared (FTIR), and 1H nuclear magnetic resonance (NMR) techniques. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. High hydrophilic and hydrophobic nano-phase separation and obvious ionic aggregate block morphology was observed in both triblock and diblock copolymers in atomic force microscopy (AFM) phase images, which may be highly related to their proton transport ability. A sulfonated AB diblock copolymer membrane with an ion-exchange capacity (IEC) of 2.06 meq g?1 has a maximum proton conductivity of 184 mS cm?1, which is higher than that of a perfluorosulfonic acid membrane under the same measurement conditions.  相似文献   

14.
To improve the proton conductivity and thermal stability of proton exchange membrane, hybrid poly (arylene ether) multiblock copolymers were synthesized by using 6F-bisphenol A monomer. The hydrophobic oligomers poly (arylene ether sulfone) containing 6F-bisphenol A with varying molecular weight were copolymerised with hydrophilic oligomer disulfonated poly (arylene ether ketone) containing pendant carboxylic acid group to prepare multiblock copolymers. For further enhancing the proton conductivity, ionic liquid is embedded into the synthesized multiblock copolymers to fabricate the hybrid multiblock membranes. The 1H NMR studies confirmed the synthesis of oligomers and multiblock copolymers whereas the FT-IR spectra revealed the interaction of ionic liquid with the multiblock copolymers. The proton conductivity of the membranes has also been examined at different temperatures and the activation energy required for the proton transport was calculated by using Arrhenius equation. At 30 °C, the maximum proton conductivity of 0.14 S/cm were shown by hybrid membrane (with 50% ionic liquid, 6FB1/I.L-50%), which is of 3.5 times greater than that of pristine 6FB1 membrane. Compared with pristine membranes, the hybrid membranes exhibit improved oxidative, thermal and mechanical stability. Moreover, the scanning electron microscopy (SEM) investigation depicts better phase separation in hybrid membranes than pristine membranes by forming ionic clusters. The membranes have been tested in H2/O2 fuel cell and their performance is compared with the state-of-art Nafion 117 membrane.  相似文献   

15.
燃料电池是以碳氢化合物为燃料的一种新型、清洁的发电装置,而其中的质子交换膜燃料电池由于具有可快速启动的优点而可应用于机动车等领域。所用的质子交换膜需要具有高的质子传导性、低的甲醇/水渗透性、好的机械和热稳定性以及合适的价格等特点,但目前已经工业化的Nafion膜并未能全部满足上述要求。为了解决这些问题,目前已经开发了多种新的质子交换膜。本文对其中的磺化嵌段型聚醚砜、磺化嵌段型聚酰亚胺和苯乙烯基嵌段共聚物在质子交换膜燃料电池中的应用进行了综述,并与Nafion膜和相应的无规共聚物的性能进行了比较。最后展望了嵌段共聚物在质子交换膜领域的发展趋势。  相似文献   

16.
The goal of the investigation presented here is the development of extremely hydrophobic materials based on polysulfone that can be applied, for instance, as fouling-resistant membrane materials. The concept used is the addition of semifluorinated polymers to polysulfone in suitable blend compositions. The influence of molecular parameters like chain structure of the semifluorinated polymer (segmented block copolymers, random copolymers) and segment molecular weight on the state of phase separation in the bulk and its influence on the surface properties have been systematically examined. It could be shown that segmented block copolymers with semifluorinated polyester segments with intermediate segment molecular weight are more suitable in blends with polysulfone than random polysulfone copolymers having semifluorinated side chains with respect to form homogeneous thin films (coatings) with highly non-wetting properties.  相似文献   

17.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

18.
One of the integral parts of the fuel cell is the proton exchange membrane. Our research group has been engaged in the past few years in the synthesis of several sulfonated poly(arylene ether) random copolymers. The copolymers were varied in both the bisphenol structure as well as in the functional groups in the backbone such as sulfone and ketones. To compare the effect of sequence length, multiblock copolymers based on poly(arylene ether sulfone)s were synthesized. This paper aims to describe our investigation of the effect of chemical composition, morphology, and ion exchange capacity (IEC) on the transport properties of proton conducting membranes. The key properties examined were proton conductivity, methanol permeability, and water self diffusion coefficient in the membranes. It was observed that under fully hydrated conditions, proton conductivity for both random and block copolymers was a function of IEC and water uptake. However, under partially hydrated conditions, the block copolymers showed improved proton conductivity over the random copolymers. The proton conductivity for the block copolymer series was found to increase with increasing block lengths under partially hydrated conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2226–2239, 2006  相似文献   

19.
Ultrafiltration membranes with similar pore sizes were prepared from acrylonitrile homopolymer and copolymers with increasing acrylamide content. The membranes containing acrylamide were more hydrophilic, had a smaller dispersion force component of the surface energy, and a smaller negative zeta potential than those prepared from the homopolymer. The effect of the differing surface chemistry of these membranes with similar pore sizes was examined by studying the ultrafiltration of bovine serum albumin (BSA) as a function of feed pH. The hydrophilic membranes showed higher permeate fluxes and flux recoveries than the hydrophobic membrane, in spite of their reduced repulsive electrostatic interaction. With increasing pH, protein transmission increased markedly for the acrylamide containing membranes whereas the transmission through the hydrophobic membrane remained low. These rejection data are explained by the combined effects of the increased hydrophilicity, decreased dispersive surface energy and reduced electrostatic repulsion of the acrylamide containing membranes.  相似文献   

20.
A series of block sulfonated poly(arylene ether ketone) (SPAEK) copolymers with different block lengths and ionic contents were synthesized by a two‐stage process. The morphology of these block SPAEK copolymers was investigated by various methods, such as differential scanning calorimetry (DSC), transmission electron microscope (TEM), and small angle X‐ray scattering (SAXS). Dark colored ionic domains of hundreds of nanometers spreading as a cloud‐like belt were observed in TEM images. The sizes of the ionic domains as a function of block copolymer composition were determined from SAXS curves. The results for the evolution of ionic domains revealed that the block copolymers exhibited more clearly phase‐separated microstructure with increasing ionic contents and hydrophobic sequence lengths. Proton conductivity is closely related to the microstructure, especially the presence of large interconnected ionic domains or ionic channels. Block SPAEK membranes have interconnected ionic clusters to provide continuous hydrophilic channels, resulting in higher proton conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号