首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of sulfoxides as chiral auxiliaries in asymmetric intermolecular Pauson-Khand reactions is described. After screening a wide variety of substituents on the sulfur atom in alpha,beta-unsaturated sulfoxides, the readily available o-(N,N-dimethylamino)phenyl vinyl sulfoxide (1 i) has proved to be highly reactive with substituted terminal alkynes under N-oxide-promoted conditions (CH3CN, 0 degrees C). In addition, these Pauson-Khand reactions occurred with complete regioselectivity and very high diastereoselectivity (de=86->96 %, (S,R(S)) diastereomer). Experimental studies suggest that the high reactivity exhibited by the vinyl sulfoxide 1 i relies on the ability of the amine group to act as a soft ligand on the alkyne dicobalt complex prior to the generation of the cobaltacycle intermediate. On the other hand, both theoretical and experimental studies show that the high stereoselectivity of the process is due to the easy thermodynamic epimerization at the C5 center in the resulting 5-sulfinyl-2-cyclopentenone adducts. When it is taken into account that the known asymmetric intermolecular Pauson-Khand reactions are limited to the use of highly reactive bicyclic alkenes, mainly norbornene and norbornadiene, this novel procedure constitutes the first asymmetric version with unstrained acyclic alkenes. As a demonstration of the synthetic interest of this sulfoxide-based methodology in the enantioselective preparation of stereochemically complex cyclopentanoids, we have developed very short and efficient syntheses of the antibiotic (-)-pentenomycin I and the (-)-aminocyclopentitol moiety of a hopane triterpenoid.  相似文献   

2.
Phosphine derivatives of alkylidyne tricobalt carbonyl clusters have been tested as catalysts/catalyst precursors in intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. A number of new phosphine derivatives of the tricobalt alkylidyne clusters [Co3(micro3-CR)(CO)9] (R = H, CO2Et) were prepared and characterised. The clusters [Co3(micro3-CR)(CO)9-x(PR'3)x] (PR'3 = achiral or chiral monodentate phosphine, x = 1-3) and [Co3(micro3-CR)(CO)7)(P-P)] (P-P = chiral diphosphine; 1,1'- and 1,2-structural isomers) were assayed as catalysts for intermolecular and (asymmetric) intramolecular Pauson-Khand reactions. The phosphine-substituted tricobalt clusters proved to be viable catalysts/catalyst precursors that gave moderate to very good product yields (up to approximately 90%), but the enantiomeric excesses were too low for the clusters to be of practical use in the asymmetric reactions.  相似文献   

3.
Five membered carbocycles are important building blocks for many biologically active molecules. Moreover, substituted cyclopentenones (e.g. cyclopentenone prostaglandins) exhibit characteristic biological activity. The efficiency and atom economy of the Pauson-Khand reaction render this process potentially one of the most attractive methods for the synthesis of such compounds. Although it was discovered in its intermolecular form, the scope of the intermolecular Pauson-Khand reaction has always been limited by the poor reactivity and selectivity of the alkene component. The past decade, especially the last three years, has seen concerted efforts to broaden the scope of this reaction. In this overview, we provide a comprehensive and critical coverage of the intermolecular Pauson-Khand reaction based on the reactivity characteristics of different classes of alkenes and a rationalization of successes and misfortunes in this area.  相似文献   

4.
[reactions: see text] We show the use of arene-chromium tricarbonyl complexes in intra- and intermolecular Pauson-Khand reactions. Both styrene and ethynylbenzene complexes react with alkynes and olefins. The synthesis of enynes connected through chromium-complexed aromatic rings is developed. The intramolecular Pauson-Khand reaction occurs in a totally diastereoselective manner.  相似文献   

5.
Pauson-Khand reactions are carried out with different substituted aromatic enynes, yielding tricyclic cyclopentenones related to natural products such as chromenes. Enynes are easily obtained in a two-step approximation from the corresponding salicylaldehydes. The reaction is promoted by dissolved TMANO (trimethylamine N-oxide) and/or 4 A molecular sieves. This new way of induction for the Pauson-Khand reaction increases yields remarkably, allowing the reaction of some substituted alkenes which fail to react in the absence of the zeolite. Isomerization of the double bond of the cyclopentenone ring is observed except when nonterminal triple bonds are used. For trisubstituted alkenes, an interrupted Pauson-Khand process is observed with moderate yields.  相似文献   

6.
Understanding the interaction of chiral ligands, alkynes, and alkenes with cobaltcarbonyl sources is critical to learning more about the mechanism of the catalytic, asymmetric Pauson-Khand reaction. We have successfully characterized complexes of the type [Co2(alkyne)(binap)(CO)4] (BINAP=(1,1'-binaphthalene)-2,2'-diylbis(diphenylphosphine)) and shown that diastereomer interconversion occurs under Pauson-Khand reaction conditions when alkyne=HC[triple bond]CCO2Me. Attempts to isolate [Co2(alkyne)(binap)(CO)x] complexes with coordinated alkenes led to the formation of cobaltacyclopentadiene species.  相似文献   

7.
Starting from easily available cyclic alkenes, enynes, and dienophiles, a tandem intermolecular Pauson-Khand reaction and Diels-Alder reaction yields polycyclic compounds in high yields.  相似文献   

8.
A cobalt-TMTU complex, derived from the in situ reduction of CoBr(2) with Zn in the presence of TMTU, can catalyze Pauson-Khand reaction at a balloon pressure of CO, which enables the synthesis of structurally diverse cyclopentenones. This catalytic system works efficiently for both intermolecular and intramolecular PK reactions.  相似文献   

9.
A major challenge that must be met for an asymmetric intermolecular Pauson-Khand reaction is to be able to limit the possible positions on the metal complex for the organic partners. Toward this end, the synthesis of monometallic systems derived from M(CO)6 and two bidentate ligands, in which the number of possible coordination sites is reduced to two, has been investigated.  相似文献   

10.
综述了近年来离子液体在不对称催化反应中的应用,包括不对称Aldol反应、不对称氟化反应、酶催化的不对称还原反应、不对称催化氢化反应、不对称硅腈化反应、不对称环丙烷化反应、烯丙基的不对称取代反应、环氧化物的不对称开环反应、不对称环氧化反应、烯烃的不对称双羟基化反应、酶催化的醇的动力学拆分。参考文献43篇。  相似文献   

11.
Terminal alkenes are readily available functional groups which appear in α‐olefins produced by the chemical industry, and they appear in the products of many contemporary synthetic reactions. While the organic transformations that apply to alkenes are amongst the most studied reactions in all of chemical synthesis, the number of reactions that apply to nonactivated terminal alkenes in a catalytic enantioselective fashion is small in number. This Minireview highlights the cases where stereocontrol in catalytic reactions of 1‐alkenes is high enough to be useful for asymmetric synthesis.  相似文献   

12.
Acrylates are well known electrophilic alkenes having multitude of applications in organic synthesis. They are very good acceptors in Michael addition reactions and are good enophile/dienophile/dipolarophile partners in cycloaddition reactions. Replacing the β-alkyl/aryl groups in acrylates by a silicon group would be interesting. In addition to the conventional reactions displayed by acrylates, β-silylacrylates (β-SAs) can show reactivity specifically related to the silicon group. Many conventional organic reactions such as hydrodimerization, organocatalytic asymmetric Michael additions, inter- and intra-molecular Diels–Alder reactions, and asymmetric 1,3-dipolar cycloadditions have been used to generate the complex chemical entities from β-SAs. Some of the reaction outcomes were vastly influenced by the silicon substituent. This review describes the practical synthesis β-SAs and their use as starting point in complex molecule generation including total synthesis of some natural products/bioactive molecules.  相似文献   

13.
While desymmetrizations by intermolecular asymmetric ring‐opening reactions of oxabicyclic alkenes with various nucleophiles have been reported over the past two decades, the demonstration of an intramolecular variant is unknown. Reported herein is the first rhodium‐catalyzed asymmetric cycloisomerization of meso‐oxabicyclic alkenes tethered to bridgehead nucleophiles, thus providing access to tricyclic scaffolds through a myriad of enantioselective C?O, C?N, and C?C bond formations. Moreover, we also demonstrate a unique parallel kinetic resolution, whereby racemic oxabicycles bearing two different bridgehead nucleophiles can be resolved enantioselectively.  相似文献   

14.
离子液体/超临界二氧化碳两相体系在有机合成中的应用   总被引:1,自引:0,他引:1  
介绍了近年来在离子液体/超临界二氧化碳两相体系中进行有机合成的最新进展, 包括烯烃氢甲酰化反应、酶催化反应、二氧化碳和环氧化物的环加成反应、烯烃环氧化反应、烯烃不对称二羟化反应、氢化反应、Heck反应、醇氧化反应、烯烃氢乙烯化反应、烯烃二聚反应等.  相似文献   

15.
近年来,用聚合物负载的手性催化剂和手性试剂完成的不对称合成反应主要集中在潜手性酮的不对称还原反应;烯烃的不对称双羟基化反应;烯烃的不对称环氧化反应;不对称Diels-Alder反应和饱和碳原子上的不对称取代反应。就近十年来聚合物负载手性催化剂和手性试剂的合成及应用进行了讨论。  相似文献   

16.
Transition-metal catalyzed intermolecular 1,2-diarylation of electronically unactivated alkenes has emerged as an extensive research topic in organic synthesis. However, most examples are mainly limited to terminal alkenes. Furthermore, transition-metal catalyzed asymmetric 1,2-diarylation of unactivated alkenes still remains unsolved and is a formidable challenge. Herein, we describe a highly efficient directed nickel-catalyzed reductive 1,2-diarylation of unactivated internal alkenes with high diastereoselectivities. More importantly, our further effort towards enantioselective 1,2-diarylation of the unactivated terminal and challenging internal alkenes is achieved, furnishing various polyarylalkanes featuring benzylic stereocenters in high yields and with good to high enantioselectivities and high diastereoselectivities. Interestingly, the generation of cationic Ni-catalyst by adding alkali metal fluoride is the key to increased efficiency of this enantioselective reaction.  相似文献   

17.
A collection of intra- and intermolecular photoinduced electron transfer (PET) reactions is presented which all are based on the phthalimide chromophore as the oxidizing species. Electron-donating groups versatile for PET processes are ethers, thioethers, amines, alkenes, arenes, and carboxylates as well as α-trialkylsilyl activated heteroatom-substituents. These reactions can be efficiently applied for the synthesis of five- and six-membered ring heterocycles, medium-sized and macrocyclic products such as macrolides, cyclopeptides, crown ethers or thioethers as well as (from intermolecular processes) Grignard-alike products.  相似文献   

18.
A gold-catalyzed intermolecular reaction of propiolic acids with alkenes led to a [4 + 2] annulation or enyne cross metathesis. The [4 + 2] annulation proceeds with net cis-addition with respect to alkenes and provides an expedient route to α,β-unsaturated δ-lactones, for which preliminary asymmetric reactions were also demonstrated. For 1,2-disubstituted alkenes, unprecedented enyne cross metathesis occurred to give 1,3-dienes in a completely stereospecific fashion. DFT calculations and experiments indicated that the cyclobutene derivatives are not viable intermediates and that the steric interactions during concerted σ-bond rearrangements are responsible for the observed unique stereospecificity.  相似文献   

19.
Herein, we report an asymmetric intermolecular Heck-type reaction of acyclic alkenes by using a palladium-pyridinyl oxazoline diacetate complex under oxidative palladium(II) catalysis conditions. A premade palladium-ligand complex afforded higher enantioselectivities than a corresponding premixed palladium-ligand system, while offering enhanced asymmetric induction when compared to known intermolecular Heck-type protocols.  相似文献   

20.
The chemistry of fluorinated compounds has experienced extraordinary growth in recent decades due to the many and varied properties which many of the compounds that contain fluorinated groups possess. Among all of them, fluorinated chiral imines, in particular the Ellman's imines, are of great importance since they are some of the most interesting building blocks for the synthesis of a large number of enantioenriched carbocycles and heterocycles with extraordinary biological and synthetic properties. This personal account covers the most significant results obtained in our research group in the last two decades concerning asymmetric tandem reactions, paying special attention to the intramolecular aza-Michael reaction (IMAMR), diversity oriented synthesis (DOS), asymmetric tandem reactions involving a p-tolylsulfinyl group as chiral inducer and cycloaddition processes, in particular, the Pauson-Khand reaction, [2+2+2]-cycloadditions and metathesis reactions, starting mainly from enyne compounds and through the use of fluorinated chiral N-sulfinyl imines and their derivatives as starting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号