首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties of polymer composites, reinforced with silica-coated multiwall carbon nanotubes (MWNTs), have been studied using the nanoindentation technique. The hardness and the Young's modulus have been found to increase strongly with the increasing content of these nanotubes in the polymer matrix. Similar experiments conducted on thin films containing MWNTs, but without a silica shell, revealed that the presence of these nanotubes does not affect the nanomechanical properties of the composites. While carbon nanotubes (CNTs) have a very high tensile strength due to the nanotube stiffness, composites fabricated with CNTs may exhibit inferior toughness. The silica shell on the surface of a nanotube enhances its stiffness and rigidity. Our composites, at 4 wt % of the silica-coated MWNTs, display a maximum hardness of 120 +/- 20 MPa, and a Young's modulus of 9 +/- 1 GPa. These are respectively 2 and 3 times higher than those for the polymeric matrix. Here, we describe a method for the silica coating of MWNTs. This is a simple and efficient technique, adaptable to large-scale production, and might lead to new advanced polymer based materials, with very high axial and bending strength.  相似文献   

2.
Alzheimer's beta-amyloid diphenylalanine motif has previously been shown to self-assemble into discrete and extraordinary stiff nanotubes; these nanotubes were initially thought to be distinct from the single crystal structure of diphenylalanine, but it is now shown that the X-ray powder diffraction pattern of the nanotubes is identical to the simulated pattern for the single crystal structure, affording a new foundation for understanding and rationalizing the properties of this remarkable organic material.  相似文献   

3.
Their mesoscopic dimensions (including a nanometer scale diameter and a micrometer scale length) make nanotubes a unique and attractive object of study, including the study of their mechanical properties and fracture in particular. The investigation of the mechanical properties of individual WS2 nanotubes is a challenging task due to their small size. Hence, various microscopy based techniques were used to overcome this challenge. The Young’s modulus was studied by techniques like atomic force microscope (AFM) and scanning electron microscope (SEM); it was also calculated by using the density-functional-based tight-binding (DFTB) method. Tensile tests and bending tests of individual WS2 nanotubes were performed as well. Furthermore, the shock wave resistance of these nanotubes was tested. The Young’s modulus of WS2 nanotubes was found to be in the range of 150–170 GPa, which is in good agreement with DFTB calculations. WS2 nanotubes also showed tensile strength as high as 16 GPa and fracture strain of 14%. These results indicate the high quality of these nanotubes which reach their theoretical strength. The interlayer shear (sliding) modulus was found to be ca. 2 GPa, this value is in good agreement with DFTB calculations. Moreover, the nanotubes were able to withstand shock waves as high as 21 GPa.  相似文献   

4.
We performed tight-binding molecular dynamics on single-walled carbon nanotubes with and without a variety of defects to study their effect on the nanotube modulus and failure through bond rupture. For a pristine (5,5) nanotube, Young's modulus was calculated to be approximately 1.1 TPa, and brittle rupture occurred at a strain of 17% under quasistatic loading. The predicted modulus is consistent with values from experimentally derived thermal vibration and pull test measurements. The defects studied consist of moving or removing one or two carbon atoms, and correspond to a 1.4% defect density. The occurrence of a Stone-Wales defect does not significantly affect Young's modulus, but failure occurs at 15% strain. The occurrence of a pair of separated vacancy defects lowers Young's modulus by approximately 160 GPa and the critical or rupture strain to 13%. These defects apparently act independently, since one of these defects alone was independently determined to lower Young's modulus by approximately 90 GPa, also with a critical strain of 13%. When the pair of vacancy defects adjacent, however, Young's modulus is lowered by only approximately 100 GPa, but with a lower critical strain of 11%. In all cases, there is noticeable strain softening, for instance, leading to an approximately 250 GPa drop in the apparent secant modulus at 10% strain. When a chiral (10,5) nanotube with a vacancy defect was subjected to tensile strain, failure occurred through a continuous spiral-tearing mechanism that maintained a high level of stress (2.5 GPa) even as the nanotube unraveled. Since the statistical likelihood of defects occurring near each other increases with nanotube length, these studies may have important implications for interpreting the experimental distribution of moduli and critical strains.  相似文献   

5.
Diphenylalanine, a key building block for organic nanotechnology, forms discrete, rigid and hollow nanotubes that are assembled spontaneously upon their dilution from organic phase into aqueous solution. Here we report the efficient preparation of several S-linked glycosylated diphenylalanine analogues bearing different monosaccharide, di-saccharide and sialic acid residues. The self-assembly studies revealed that these glycopeptides adopted various structures and glycosylation could be a tool to manipulate the self-assembly process. Moreover, the solubility of these analogues was found to be much greater than diphenylalanine, which could open new applications based on these nanostructures.  相似文献   

6.
采用分子动力学方法对端口接枝不同数量羧基的扶手椅型和锯齿型单壁碳纳米管弹性模量进行了模拟研究. 结果表明, 扶手椅型(5, 5)、(10, 10)管和锯齿型(9, 0)、(18, 0)管在未接枝状态下杨氏模量分别为948、901GPa和804、860 GPa. 在接枝2-8个羧基情况下, 扶手椅型单壁碳纳米管拉伸杨氏模量基本不随接枝数量的增加而发生变化, 而锯齿型单壁碳纳米管则不同, 接枝状态下的弹性模量比未接枝状态小很多, 但随接枝数量的增加又呈略增趋势. 分别从接枝后碳纳米管变形电子密度等值线结构变化、键长变化和系统势能变化规律等方面, 对单壁碳纳米管弹性模量的接枝效应进行了分析.  相似文献   

7.
The diphenylalanine peptide, the core recognition motif of the beta-amyloid polypeptide, efficiently self-assembles into discrete, well-ordered nanotubes. Here, we describe the notable thermal and chemical stability of these tubular structures both in aqueous solution and under dry conditions. Scanning and transmission electron microscopy (SEM and TEM) as well as atomic force microscopy (AFM) revealed the stability of the nanotubes in aqueous solution at temperatures above the boiling point of water upon autoclave treatment. The nanotubes preserved their secondary structure at temperatures up to 90 degrees C, as shown by circular dichroism (CD) spectra. Cold field emission gun (CFEG) high-resolution scanning electron microscope (HRSEM) and thermogravimetric analysis (TGA) of the peptide nanotubes after dry heat revealed durability at higher temperature. It was shown that the thermal stability of diphenylalanine peptide nanotubes is significantly higher than that of a nonassembling dipeptide, dialanine. In addition to thermal stability, the peptide nanotubes were chemically stable in organic solvents such as ethanol, methanol, 2-propanol, acetone, and acetonitrile, as shown by SEM analysis. Moreover, the acetone environment enabled AFM imaging of the nanotubes in solution. The significant thermal and chemical stability of the peptide nanotubes demonstrated here points toward their possible use in conventional microelectronic and microelectromechanics processes and fabrication into functional nanotechnological devices.  相似文献   

8.
We report on the Raman spectra of water under high temperature and pressure conditions and show a discontinuity in the pressure dependence of the OH stretching frequency. As pressure increases, the strength of hydrogen bonding increases rapidly in the pressure ranges up to 0.4+/-0.1 GPa at 25 degrees C, 1.0+/-0.1 GPa at 100 degrees C, and 1.3+/-0.1 GPa at 300 degrees C and slowly above these pressures. This finding clearly demonstrates the existence of discontinuities in the pressure response of the hydrogen bonds of water, which suggests a possible structural change under these conditions.  相似文献   

9.
Understanding self‐assembling peptides becomes essential in nanotechnology, thereby providing a bottom‐up method for fabrication of nanostructures. Diphenylalanine constitutes an outstanding building block that can be assembled into various nanostructures, including two‐dimensional bilayers or nanotubes, exhibiting superb mechanical properties. It is known that the effect of the ions is critical in conformational and chemical interactions of bilayers or membranes. In this study, we analyzed the effect of sodium chloride on diphenylalanine bilayer using coarse‐grained molecular dynamics simulations, and calculated the bending Young's modulus and the torsional modulus by applying normal modal analysis using an elastic network model. The results showed that sodium chloride dramatically increases the assembling efficiency and stability, thereby promising to allow the precise design and control of the fabrication process and properties of bio‐inspired materials. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Effects of organic solvents on the scission energy of rodlike micelles   总被引:1,自引:0,他引:1  
The linear viscoelastic response of erucyl bis(hydroxyethyl) methylammonium chloride with added KCl has been studied as a function of temperature and nonpolar solvent addition. The plateau modulus is independent of temperature from 25 to 40 degrees C, in contrast to previous studies with salicylate counterions that showed a plateau modulus increasing with temperature over this range. The average micelle length, L, predicted by the model of Cates, depends experimentally on Escis/kBT, where Escis is the scission energy of the chain and kBT is the Boltzmann constant times the absolute temperature. With ethanol addition, the calculated average contour length, L, decreases by a factor of 4 as ethanol concentration varies from 0 to 1.3 M. This corresponds to an apparent energy for scission, Escis, decrease from 81 +/- 8 to 74 +/- 7 kJ/mol. On the other hand, only 80 mM of hexane is required to cause a decrease in Escis to the same level, and for hexane addition levels above 70 mM a disruption in the plateau modulus indicates the disruption of the rodlike structure. The correspondence between the effect of temperature and the effect of solvent addition allows the development of "solvent/temperature" superposition rules to predict the rheology of these viscoelastic fluids at elevated temperatures.  相似文献   

11.
Highly oriented, large area continuous composite nanofiber sheets made from surface-oxidized multiwalled carbon nanotubes (MWNTs) and polyacrylonitrile (PAN) were successfully developed using electrospinning. The preferred orientation of surface-oxidized MWNTs along the fiber axis was determined with transmission electron microscopy and electron diffraction. The surface morphology and height profile of the composite nanofibers were also investigated using an atomic force microscope in tapping mode. For the first time, it was observed that the orientation of the carbon nanotubes within the nanofibers was much higher than that of the PAN polymer crystal matrix as detected by two-dimensional wide-angle X-ray diffraction experiments. This suggests that not only surface tension and jet elongation but also the slow relaxation of the carbon nanotubes in the nanofibers are determining factors in the orientation of carbon nanotubes. The extensive fine absorption structure detected via UV/vis spectroscopy indicated that charge-transfer complexes formed between the surface-oxidized nanotubes and negatively charged (-CN[triple bond]N:) functional groups in PAN during electrospinning, leading to a strong interfacial bonding between the nanotubes and surrounding polymer chains. As a result of the highly anisotropic orientation and the formation of complexes, the composite nanofiber sheets possessed enhanced electrical conductivity, mechanical properties, thermal deformation temperature, thermal stability, and dimensional stability. The electrical conductivity of the PAN/MWNT composite nanofibers containing 20 wt % nanotubes was enhanced to approximately 1 S/cm. The tensile modulus values of the compressed composite nanofiber sheets were improved significantly to 10.9 and 14.5 GPa along the fiber winding direction at the MWNT loading of 10 and 20 wt %, respectively. The thermal deformation temperature increased with increased MWNT loading. The thermal expansion coefficient of the composite nanofiber sheets was also reduced by more than an order of magnitude to 13 x 10(-6)/ degrees C along the axis of aligned nanofibers containing 20 wt % MWNTs.  相似文献   

12.
The molecular dynamics (MD) technique was used to calculate the temperature dependence of the structure, molecular motion, and mechanical property of the orthorhombic polyethylene (PE) crystal. The potential functional parameters reported by Karasawa et al. (J Phys Chem, 95 (1991) 2260) were refined further so that the vibrational frequencies of infrared and Raman bands, measured by us at ultra-low temperatures for the normal and fully deuterated PE, could be reproduced well. The flip-flop motion around the chain axis and the torsional motion of the skeletal chains were found to start above ca. 350 K and increase the amplitude of these motions progressively. Coupling these two types of chain motion resulted in a steep increase of the thermal vibration parameters or the mean-square-displacements of carbon and hydrogen atoms, corresponding well with the X-ray data. The lattice constants and the related linear thermal expansion coefficients were also found to be in good agreement with the observed data. The calculated Young's modulus along the chain axis decreased gradually with the increasing temperature: 330 GPa at 0 K to 280 GPa at room temperature. The latter was in good agreement with the value of 280–305 GPa evaluated from the Raman measurement of the longitudinal acoustic mode. Young's modulus was found to relate intimately with the chain contraction caused by the skeletal torsional motion. Only 0.3% contraction of the chain resulted in the reduction of the modulus by ca. 35%. A similar behavior was also seen in the trigonal polyoxymethylene and nylon 6 α forms.  相似文献   

13.
Light-harvesting peptide nanotubes are synthesized by the self-assembly of diphenylalanine with THPP and platinum nanoparticles (nPt; see picture; TEOA = triethanolamine). The light-harvesting peptide nanotubes are suitable for mimicking photosynthesis because of their structure and electrochemical properties that are similar to the ones of photosystem?I in natural photosynthesis.  相似文献   

14.
Single-walled carbon nanotube (SWNT) and other carbon-based coatings are being considered as replacements for indium tin oxide (ITO). The problems of transparent conductors (TCs) coatings from SWNT and similar materials include poor mechanical properties, high roughness, low temperature resilience, and fast loss of conductivity. The simultaneous realization of these desirable characteristics can be achieved using high structural control of layer-by-layer (LBL) deposition, which is demonstrated by the assembly of hydroethyl cellulose (HOCS) and sulfonated polyetheretherketone (SPEEK)-SWNTs. A new type of SWNT doping based on electron transfer from valence bands of nanotubes to unoccupied levels of SPEEK through π-π interactions was identified for this system. It leads to a conductivity of 1.1 × 10(5) S/m at 66 wt % loadings of SWNT. This is better than other polymer/SWNT composites and translates into surface conductivity of 920 Ω/? and transmittance of 86.7% at 550 nm. The prepared LBL films also revealed unusually high temperature resilience up to 500 °C, and low roughness of 3.5 nm (ITO glass -2.4 nm). Tensile modulus, ultimate strength, and toughness of such coatings are 13 ± 2 GPa, 366 ± 35 MPa, and 8 ± 3 kJ/m(3), respectively, and exceed corresponding parameters of all similar TCs. The cumulative figure of merit, ∏(TC), which included the critical failure strain relevant for flexible electronics, was ∏(TC) = 0.022 and should be compared to ∏(TC) = 0.006 for commercial ITO. Further optimization is possible using stratified nanoscale coatings and improved doping from the macromolecular LBL components.  相似文献   

15.
The zone-drawing method (ZD) was applied to electrochemically synthesized polypyrrole films containing tosylate (PPy/TsO) and the mechanical and electrical properties of the resulting films were investigated. It was found that the electrical conductivity of the zone-drawn film reached 365 S cm−1 in the drawing direction, which was 4.7 times that of the original film. The tensile properties of the zone-drawn film were improved and Young's modulus and strength at break increased to 4.32 GPa and 90.1 MPa from 0.53 GPa and 40.4 MPa of the as-synthesized film, respectively. The dynamic storage modulus (E) increased by the zone-drawing over a whole experimental temperature range and attained 7.0 GPa at room temperature and 4.0 GPa even at 200°C. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
原位缩聚法制备碳纳米管/尼龙11复合材料   总被引:1,自引:0,他引:1  
用原位缩聚法制备了碳纳米管增强的尼龙11复合材料,用X射线衍射仪、红外(FTIR)、扫描电镜(SEM)、热重(TGA)、机械拉伸测试仪等对其结构、形貌、热性能及机械性能进行了表征测试.扫描电镜结果显示碳纳米管均一地分散在尼龙11/碳纳米管复合材料中.复合材料的拉伸模量比纯尼龙11有较大的提高.当复合材料中碳纳米管含量分别为1%,5%,10%时,材料的拉伸模量分别提高了34.5%,92.9%和113,7%.同时,复合材料的储能模量也有提高.热分析结果显示当复合材料中碳纳米管含量为1%时,其失重5%和10%的温度分别由纯尼龙11的404℃、424℃提高到414℃和437℃.示差扫描量热分析(DSC)显示复合材料的结晶温度随碳纳米管的加入而升高,而结晶度则降低.  相似文献   

17.
The focus of this study is on incorporating pendant sulfonate groups along the backbone of a liquid crystalline polyester (LCPE) with the aim to improve the dispersion of single wall carbon nanotubes (SWNTs) and nanodiamonds (NDs). Two LCPE matrices, one sulfonated (LCPE‐S) and one nonsulfonated reference polymer (LCPE‐R), were successfully synthesized via a melt condensation method using aromatic and aliphatic AB, AA, and BB‐type monomers. Upon the introduction of SWNT and ND particles, the glass transition temperature (Tg) of the sulfonated LCPE increased from 21.5 °C to 41.0 °C and 41.9 °C, for SWNTs and NDs, respectively. When sulfonate groups were absent, a decrease in Tg was observed. The storage modulus (E′) followed a similar trend, i.e., E′ increased from 1.3 GPa to 5.2 GPa and 3.4 GPa, upon the addition of NDs and SWNTs. The LCPE‐S showed a lower thermal stability due to the loss of sulfonate groups, i.e. the 5% weight loss temperature (T) is ~280 °C for LCPE‐S vs. 333 °C for LCPE‐R. The decomposition temperature increased somewhat upon addition of the nanoparticles. The ability of dispersing carbon‐based nanostructures combined with an accessible melt processing window makes sulfonated LCPs attractive matrices towards preparing nanocomposites with improved thermal and mechanical properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
Multilayer graphene oxide nanosheets were fabricated using commercially available expanded graphite by simple ultrasonic treatment and then were incorporated into the amorphous carbon matrix as fillers by electrochemical deposition. The electrical conductivity of the films was strongly improved due to the contribution of the multilayer graphene oxide sheets. Moreover, the Young’s modulus, hardness and elastic recovery of the composite films were measured to be about 171.1 GPa, 10.1 GPa and 81.4%, respectively, compared to 137.4 GPa, 5.1 GPa and 44.3% of undoped a-C:H films prepared at the same conditions. Additionally, the friction coefficient was tested to be 0.15 (0.5 N, 2 Hz) and the antiwear life was prolonged to about 200 s while the undoped DLC films obtained at the same condition were easy to be frazzled.  相似文献   

19.
Using high-resolution quasielastic neutron scattering, we investigated the temperature dependence of single-particle dynamics of water confined in single- and double-wall carbon nanotubes with the inner diameters of 14+/-1 and 16+/-3 A, respectively. The temperature dependence of the alpha relaxation time for water in the 14 A nanotubes measured on cooling down from 260 to 190 K exhibits a crossover at 218 K from a Vogel-Fulcher-Tammann law behavior to an Arrhenius law behavior, indicating a fragile-to-strong dynamic transition in the confined water. This transition may be associated with a structural transition from a high-temperature, low-density (<1.02 gcm(3)) liquid to a low-temperature, high-density (>1.14 gcm(3)) liquid found in molecular dynamics simulation at about 200 K. However, no such dynamic transition in the investigated temperature range of 240-195 K was detected for water in the 16 A nanotubes. In the latter case, the dynamics of water simply follows a Vogel-Fulcher-Tammann law. This suggests that the fragile-to-strong crossover for water in the 16 A nanotubes may be shifted to a lower temperature.  相似文献   

20.
《Soft Materials》2013,11(2-3):125-144
Abstract

New procedures involving depth‐sensing indentation are used to measure the submicron scale elastic modulus, hardness, viscosity, and activation energy and volume for creep of amorphous selenium below glass transition. The accurate measurement of Young's modulus in a highly viscoelastic situation using depth‐sensing indentation remains a challenge, and a creep correction procedure is employed here to measure the modulus. The measured Young's modulus exhibits a strong decreasing trend from ~10 GPa to 4.4 GPa as temperature increases from ~302 K to 309 K, in reasonably good agreement with bulk behavior. Two new procedures are also proposed here to measure the viscosity. The measured shear viscosity decreases from ~1×1012 Pa‐s to ~2×1010 Pa‐s when the temperature increases over the same range, and the variation with temperature is found to obey an Arrehnius rate equation. The activation energy for the viscous creep process is found to be ~463 kJ/mol. Both the viscosity and the activation energy are lower than the bulk values, and this is thought to be due to the much higher stress levels of over 200 MPa involved in the nanoindentation experiments here. The apparent activation volume exhibits a rising trend from 1.04×10?31 to 2.35×10?30 m3 over the same temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号