首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we study differential equations of the formx(t) + x(t)=f(x(t)), x(0)=x 0 C HereC is a closed, bounded convex subset of a Banach spaceX,f(C) C, and it is often assumed thatf(x) is a quadratic map. We study the differential equation by using the general theory of nonexpansive maps and nonexpansive, non-linear semigroups, and we obtain sharp results in a number of cases of interest. We give a formula for the Lipschitz constant off: C C, and we derive a precise explicit formula for the Lipschitz constant whenf is quadratic,C is the unit simplex inR n, and thel 1 norm is used. We give a new proof of a theorem about nonexpansive semigroups; and we show that if the Lipschitz constant off: CC is less than or equal to one, then limtf(x(t))–x(t)=0 and, if {x(t):t 0} is precompact, then limtx(t) exists. Iff¦C=L¦C, whereL is a bounded linear operator, we apply the nonlinear theory to prove that (under mild further conditions on C) limt f(x(t))–x(t)=0 and that limt x(t) exists if {x(t):t 0} is precompact. However, forn 3 we give examples of quadratic mapsf of the unit simplex ofR n into itself such that limt x(t) fails to exist for mostx 0 C andx(t) may be periodic. Our theorems answer several questions recently raised by J. Herod in connection with so-called model Boltzmann equations.  相似文献   

2.
We study the modelling of purely conductive heat transfer between a porous medium and an external fluid within the framework of the volume averaging method. When the temperature field for such a system is classically determined by coupling the macroscopic heat conduction equation in the porous medium domain to the heat conduction equation in the external fluid domain, it is shown that the phase average temperature cannot be predicted without a generally negligible error due to the fact that the boundary conditions at the interface between the two media are specified at the macroscopic level.Afterwards, it is presented an alternative modelling by means of a single equation involving an effective thermal conductivity which is a function of point inside the interfacial region.The theoretical results are illustrated by means of some numerical simulations for a model porous medium. In particular, temperature fields at the microscopic level are presented.Roman Letters sf interfacial area of thes-f interface contained within the macroscopic system m2 - A sf interfacial area of thes-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - g vector that maps to s , m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l s,l f microscopic characteristic length m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for thef-phase at thef-s interface - n outwardly directed unit normal vector at the dividing surface. - R 0 REV characteristic length, m - T i macroscopic temperature at the interface, K - error on the external fluid temperature due to the macroscopic boundary condition, K - T * macroscopic temperature field obtained by solving the macroscopic Equation (3), K - V averaging volume, m3 - V s,V f volume of the considered phase within the averaging volume, m3. - mp volume of the porous medium domain, m3 - ex volume of the external fluid domain, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 - x, z spatial coordinates Greek Letters s, f volume fraction - ratio of the effective thermal conductivity to the external fluid thermal conductivity - * macroscopic thermal conductivity (single equation model) kcal/m s K - s, f microscopic thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding toT *, K - spatial deviation temperature K - error in the temperature due to the macroscopic boundary conditions, K - * i macroscopic temperature at the interface given by the single equation model, K - spatial average - s , f intrinsic phase average.  相似文献   

3.
The paper presents an exact analysis of the dispersion of a passive contaminant in a viscous fluid flowing in a parallel plate channel driven by a uniform pressure gradient. The channel rotates about an axis perpendicular to its walls with a uniform angular velocity resulting in a secondary flow. Using a generalized dispersion model which is valid for all time, we evaluate the longitudinal dispersion coefficientsK i (i=1, 2, ...) as functions of time. It is shown thatK 1=0 andK 3,K 4, ... decay rapidly in comparison withK 2. ButK 2 decreases with increasing (the dimensionless rotation parameter) for values of upto approximately =2.2. ThereafterK 2 increases with further increase in and its value gets saturated for large values of (say, 500) and does not change any further with increase in . A physical explanation of this anomalous behaviour ofK 2 is given.
Instationäre konvektive Diffusion in einem rotierenden Parallelplattenkanal
Zusammenfassung In dieser Untersuchung wird eine exakte Analyse der Ausbreitung eines passiven Kontaminierungsstoffes in einer zähen Flüssigkeit gegeben, die, befördert durch einen gleichförmigen Druckgradienten, in einem Parallelplattenkanal strömt. Der Kanal rotiert mit gleichförmiger Winkelgeschwindigkeit um eine zu seinen Wänden senkrechte Achse, wodurch sich eine Sekundärströmung ausbildet. Unter Verwendung eines generalisierten, für alle Zeiten gültigen Dispersionsmodells werden die longitudinalen DispersionskoeffizientenK i (i=1, 2, ...) als Funktionen der Zeit ermittelt. Es wird gezeigt, daßK 1=0 gilt und dieK 3,K 4, ... gegenüberK 2 schnell abnehmen.K 2 nimmt ab, wenn , der dimensionslose Rotationsparameter, bis etwa zum Wert 2,2 ansteigt. Danach wächstK 2 mit bis auf einem Endwert an, der etwa ab =500 erreicht wird. Dieses anomale Verhalten vonK 2 findet eine physikalische Erklärung.

List of symbols C solute concentration - D molecular diffusivity - K i longitudinal dispersion coefficients - 2L depth of the channel - P 0 dimensionless pressure gradient along main flow - Pe Péclet number - q velocity vector - Q x,Q y mass flux along the main flow and the secondary flow directions - dimensionless average velocity along the main flow direction - (x, y, z) Cartesian co-ordinates Greek symbols dimensionless rotation parameter - the inclination of side walls withx-axis - kinematic viscosity - fluid density - dimensionless time - angular velocity of the channel - dimensionless distance along the main flow direction - dimensionless distance along the vertical direction - dimensionless solute concentration - integral of the dispersion coefficientK 2() over a time interval  相似文献   

4.
In the present paper an attempt has been made to find out effects of uniform high suction in the presence of a transverse magnetic field, on the motion near a stationary plate when the fluid at a large distance above it rotates with a constant angular velocity. Series solutions for velocity components, displacement thickness and momentum thickness are obtained in the descending powers of the suction parameter a. The solutions obtained are valid for small values of the non-dimensional magnetic parameter m (= 4 e 2 H 0 2 /) and large values of a (a2).Nomenclature a suction parameter - E electric field - E r , E , E z radial, azimuthal and axial components of electric field - F, G, H reduced radial, azimuthal and axial velocity components - H magnetic field - H r , H , H z radial, azimuthal and axial components of magnetic field - H 0 uniform magnetic field - H* displacement thickness and momentum thickness ratio, */ - h induced magnetic field - h r , h , h z radial, azimuthal and axial components of induced magnetic field - J current density - m nondimensional magnetic parameter - p pressure - P reduced pressure - R Reynolds number - U 0 representative velocity - V velocity - V r , V , V z radial, azimuthal and axial velocity components - w 0 uniform suction through the disc. - density - electrical conductivity - kinematic viscosity - e magnetic permeability - a parameter, (/)1/2 z - a parameter, a - * displacement thickness - momentum thickness - angular velocity  相似文献   

5.
A numerical study of laminar natural convection inside uniformly heated, partially or fully filled horizontal cylinders is made. A coordinate transformation which simplifies the discretization of the equations of motion and energy is utilized. The resulting system of partial differential equations with their boundary conditions is solved using central differences for various Prandtl and Grashof numbers for two different grid sizes. The flow in completely filled cylinders for which experimental data are available is predicted. Close agreement between steady-state predictions and experiments is obtained for temperature and velocity profiles as well as for the streamline contours and isotherms. The technique is further demonstrated by solving the transient natural convection flow inside a partially filled horizontal cylinder with an adiabatic free surface and subjected to uniform wall heating.
Laminare freie Konvektion in horizontalen Zylindern
Zusammenfassung Es wurde eine numerische Berechnung der laminaren, freien Konvektion in gleichmäßig beheizten, teilweise oder ganz gefüllten, horizontalen Zylindern durchgeführt. Dabei wird eine Koordinatentransformation benützt, welche die Diskretisierung der Bewegungs- und der Energiegleichung vereinfacht. Das so resultierende System von partiellen Differentialgleichungen wird, zusammen mit seinen Randbedingungen, unter Verwendung einer Differenzenmethode für verschiedene Prandtl und Grashof-Zahlen sowie für zwei verschiedene Gittergrößen gelöst. Für den vollständig gefüllten Zylinder, für den experimentelle Daten verfügbar sind, wird die Strömung vorhergesagt. Dabei wird für stationäre Zustände gute Übereinstimmung zwischen Rechnung und Experiment erzielt. Dies gilt sowohl für den Verlauf der Stromlinien als auch für den der Isothermen. Das Verfahren wird weiterhin am Beispiel der Berechnung instationärer, freier Konvektion in einem partiell gefüllten, horizontalen Zylinder demonstriert, wobei eine adiabate, freie Oberfläche und gleichmäßige Beheizung der Wand angenommen sind.

Nomenclature g acceleration due to gravity, m/s2 - Gr R * modified Grashof number =gqR4/kv2 - Gr R Grashof number =gTR3/v2 - H heat function vector, dimensionless - k thermal conductivity, W/mK - L(Y) cord length associated with coordinateY, dimensionless - Pr Prandtl number=v/ - q wall heat flux, W/m2 - R radius, m - r(X, Y,Z) distance of a boundary point from the reference axis, dimensionless - S vector derived from the flow field solution, dimensionless - T temperature, K - T w wall temperature, K - T reference temperature, K - t time, s - u, v velocity components inx, y directions, m/s - U, V dimensionless velocity components inX- and Y-direction normalized withU - U reference velocity=gqR2/k or gTR, m/s - V velocity vector, dimensionless - W vorticity vector, dimensionless - W vorticity, dimensionless - x, y, z cartesian coordinates, m - X, Y, Z cartesian coordinates normalized with a reference length, dimensionless Greek letters thermal diffusivity, m2/s - coefficient of thermal expansion, K–1 - ,,, non-dimensional coordinates in the transformed domain - non-dimensional temperature =(T–T)k/qR or T–T/Tw–T - v kinematic viscosity, m2/s - non-dimensional time=v/R2 GrRt or v/R2 G R * t - angle measured from the bottom of the cylinder, rads - * angle measured from the axis on (– ) plane, rads - heat potential, dimensionless - angle of incidence of the heat flux vector, rads - non-dimensional stream function - vector potential, dimensionless - grid size, dimensionless - 2 Laplacian operator - gradient vector  相似文献   

6.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

7.
The work describes a way to obtain loss modulus and storage modulus master curves from oscillatory measurements of silicone oils.The loss modulus master curve represents the dependence of the viscous flow behavior on · 0 * and the storage modulus master curve — the dependence of the elastic flow behavior on · 0 * .The relation between the values of the loss modulus and storage modulus master curves (at a certain frequency) is a measurement of the viscoelastic behavior of a system. The G/G-ratio depends on · 0 * which leads to a viscoelastic master curve. The viscoelastic master curve represents the relation between the elastic and viscous oscillatory flow behavior.  相似文献   

8.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

9.
The documentation and control of flow disturbances downstream of various open inlet contractions was the primary focus with which to evaluate a spatial sampling technique. An X-wire probe was rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section. This provided quasi-instantaneous multi-point measurements of the streamwise and azimuthal components of the velocity to investigate the temporal and spatial characteristics of the flowfield downstream of various contractions. The extent to which a particular contraction is effective in controlling ingested flow disturbances was investigated by artificially introducing disturbances upstream of the contractions. Spatial as well as temporal mappings of various quantities are presented for the streamwise and azimuthal components of the velocity. It was found that the control of upstream disturbances is highly dependent on the inlet contraction; for example, reduction of blade passing frequency noise in the ground testing of jet engines should be achieved with the proper choice of inlet configurations.List of symbols K uv correlation coefficient= - P percentage of time that an azimuthal fluctuating velocity derivative dv/d is found - U streamwise velocity component U=U (, t) - V azimuthal or tangential velocity component due to flow and probe rotation V=V (, t) - mean value of streamwise velocity component - U m resultant velocity from and - mean value of azimuthal velocity component induced by rotation - u fluctuating streamwise component of velocity u=u(, t) - v fluctuating azimuthal component of velocity v = v (, t) - u phase-averaged fluctuating streamwise component of velocity u=u(0) - v phase-averaged fluctuating azimuthal component of velocity v=v() - û average of phase-averaged fluctuating streamwise component of velocity (u()) over cases I-1, II-1 and III-1 û = û() - average of phase-averaged fluctuating azimuthal component of velocity (v()) over cases I-1, II-1 and III-1 - u fluctuating streamwise component of velocity corrected for non-uniformity of probe rotation and/or phase-related vibration u = u(0, t) - v fluctuating azimuthal component of velocity corrected for non-uniformity or probe rotation and/or phase-related vibration v=v (, t) - u 2 rms value of corrected fluctuating streamwise component of velocity - rms value of corrected fluctuating azimuthal component of velocity - phase or azimuthal position of X-probe  相似文献   

10.
Magnetohydrodynamic natural convection heat transfer from radiate vertical surfaces with fluid suction or injection is considered. The nonsimilarity parameter is found to be the conductive fluid injection or suction along the streamwise coordinate = V{4x/2 g(T w T )}1/4. Three dimensionless parameters had been found to describe the problem: the magnetic influence number N = B 2 y /V 2, the radiation-conduction parameter R d = k R /4aT 3 , and the Gebhart number Ge x = gx/cp to represent the effect of the viscous dissipation. It is found that increasing the magnetic field strength causes the velocity and the heat transfer rates inside the boundary layer to decrease. Its apparent that increasing the radiation-conduction parameter decreases the velocity and enhances the heat transfer rates. The Gebhart number, i.e, the viscous dissipation had no effect on the present problem.Nomenclature a Stefan-Boltzmann constant - B y Magnetic field flux density Wb/m2 - Cf x Local skin friction factor - c p Specific heat capacity - f Dimensionless stream function - Ge x Gebhart number, gx/cp - g Gravitational acceleration - k Thermal Conductivity - L Length of the plate - N Magnetic influence number, B 2 y /V 2 - p Pressure - Pr Prandtl number - q r Radiative heat flux - q w (x) Local surface heat flux - Q w (x) Dimensionless Local surface heat flux - R d Planck number (Radiation-Conduction parameter), k R /4aT 3 - T Temperature - T Free stream temperature - T w Wall temperature - u, v Velocity components in x- and y-directions - V Porous wall suction or injection velocity - V w Porous wall suction or injection velocity - x, y Axial and normal coordinates - Thermal diffusivity Greek symbols R Roseland mean absorption coefficient, 4/3R d - Coefficient of thermal expansion - Nonsimilarity parameter, V{4x/2 g(T w T )}1/4 - Peseudo-similarity variable - Dimensionless temperature - w Ratio of surface temperature to the ambient temperature, T w /T - Dynamice viscosity - Kinemtic viscosity - Fluid density - Electrical conductivity - w Local wall shear stress - Dimensional stream function  相似文献   

11.
We prove the existence and uniqueness of entropy solutions of the Neumann problem for the quasilinear parabolic equation uta(u, Du), where a(z,)=f(z,), and f is a convex function of with linear growth as ||||, satisfying other additional assumptions. In particular, this class includes the case where f(z,)=(z)(), >0, and is a convex function with linear growth as ||||.  相似文献   

12.
In this paper we consider the asymptotic behavior of solutions of the quasilinear equation of filtration as t. We prove that similar solutions of the equation u t = (u )xx asymptotically represent solutions of the Cauchy problem for the full equation u t = [(u)]xx if (u) is close to u for small u.  相似文献   

13.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

14.
Mass conservation and linear momentum balance relations for a porous body and any fluid therein, valid at any given length scale in excess of nearest-neighbour molecular separations, are established in terms of local weighted averages of molecular quantities. The mass density field for the porous body at a given scale is used to identify its boundary at this scale, and a porosity field is defined for any pair of distinct length scales. Specific care is paid to the interpretation of the stress tensor associated with each of the body and fluid at macroscopic scales, and of the force per unit volume each exerts on the other. Consequences for the usual microscopic and macroscopic viewpoints are explored.Nomenclature material system; Section 2.1. - porous body (example of a material system); Sections 2.1, 3.1, 4.1 - fluid body (example of a material system); Sections 2.1, 3.1, 4.1 - weighting function; Sections 2.1, 2.3 - ,h weighting function corresponding to spherical averaging regions of radius and boundary mollifying layer of thicknessh; Section 3.2 - Euclidean space; Section 2.1 - V space of all displacements between pairs of points in; Section 2.1 - mass density field corresponding to; (2.3)1 - P , f mass density fields for , ; (4.1) - P momentum density field corresponding to; (2.3)2 - v velocity field corresponding to; (2.4) - S r (X) interior of sphere of radiusr with centre at pointx; (3.3) - boundary ofany region - region in which p > 0 with = ,h; (3.1) - subset of whose points lie at least+h from boundary of ; (3.4) - abbreviated versions of ; Section 3.2, Remark 4 - strict interior of ; (3.7) - analogues of for fluid system ; Section 3.2 - general version of corresponding to any choice of weighting function; (4.6) - interfacial region at scale; (3.8) - 0 scale of nearest-neighbour separations in ; Section 3.2. Remark 1 - porosity field at scales ( 1; 2); (3.9) - pore space at scales ( 1; 2); (3.12)  相似文献   

15.
Hyperbolic phenomena in a strongly degenerate parabolic equation   总被引:2,自引:0,他引:2  
We consider the equation u t =((u) (u x )) x , where >0 and where is a strictly increasing function with lim s = <. We solve the associated Cauchy problem for an increasing initial function, and discuss to what extent the solution behaves qualitatively like solutions of the first-order conservation law u t = ((u)) x . Equations of this type arise, for example, in the theory of phase transitions where the corresponding free-energy functional has a linear growth rate with respect to the gradient.  相似文献   

16.
Summary The 4 constant parameters of an Oldroyd type constitutive equation for normal human blood of 45% haematocrit were determined by means of the steady flow curve and the material functions () and (), measured at 2 Hz in an oscillatory capillary viscometer. It was found, as other authors did before, that the phenomenological behaviour of blood flow can be reproduced qualitatively thereby. The quantitative behaviour, however, cannot be described by thus developed parameters. The parameters of the constitutive equationµ 0, 1 and 2 were therefore generalized to become dependent of shear rate and frequency respectively.In itself this is nothing but a transformation of the material functions ( ),() and (), but these can be used as parameters in a constitutive equation though having lost the property of constancy.In this way the linear region of viscoelasticity and the steady flow curve can be reproduced quantitatively. A computer simulation of oscillatory flow for large amplitudes shows another tendency for the phase shift between pressure and flow than the experiment in the oscillatory capillary rheometer does.The applicability of a constitutive equation modified in this manner for other than oscillatory flow should be further examined especially for pulsatile flow.
Zusammenfassung Mit Hilfe der Fließkurve für die stationäre Strömung und Messungen der Materialfunktion () im Oszillations-Kapillarrheometer bei 2 Hz wurden die Konstanten der 4-Konstanten-Oldroyd-Stoffgleichung für gesundes Humanblut von 45% Hämatokrit bestimmt. Es zeigte sich, daß sich — wie auch schon von anderen Autoren mitgeteilt wurde — mit den so ermittelten Modellkonstanten die Phänomenologie des Fließverhaltens des Blutes qualitativ gut beschreiben läßt. Zur quantitativen Beschreibung reicht dieses Modell jedoch nicht aus, wie man an der Wiedergabe der stationären Fließkurve und der Materialfunktionen der linearen Viskoelastizität erkennt. Aus diesem Grund wurden die Parameterµ 0, 1 und 2 in Abhängigkeit der Schergeschwindigkeit bzw. der Frequenz angesetzt.Dies bedeutet zunächst nichts anderes als eine Transformation der Materialfunktionen, jedoch in einer Art, daß letztere als Parameter in einer Stoffgleichung verwendet werden können, was allerdings mit dem Verlust der Konstanz der Parameter verbunden ist. Mit einer derart modifizierten Stoffgleichung lassen sich der Bereich der linearen Viskoelastizität und die stationäre Fließkurve quantitativ beschreiben. Eine Computersimulation der oszillierenden Rohrströmung zeigt für große Amplituden eine andere Tendenz für die Phasenverschiebung zwischen Druck und Volumenstrom, als sie sich bei Messungen am Oszillations-Kapillarrheometer ergibt.Die Anwendbarkeit der modifizierten Stoffgleichung für andere Strömungsformen, wie z.B. pulsierende Rohrströmungen, muß noch geprüft werden.


Paper, presented at the Annual Conference of the Deutsche Rheologische Gesellschaft in Berlin, May 8–10, 1978.

With 8 figures  相似文献   

17.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   

18.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

19.
A mixed convection parameter=(Ra) 1/4/(Re)1/2, with=Pr/(1+Pr) and=Pr/(1 +Pr)1/2, is proposed to replace the conventional Richardson number, Gr/Re2, for combined forced and free convection flow on an isothermal vertical plate. This parameter can readily be reduced to the controlling parameters for the relative importance of the forced and the free convection,Ra 1/4/(Re 1/2 Pr 1/3) forPr 1, and (RaPr)1/2/(RePr 1/2 forPr 1. Furthermore, new coordinates and dependent variables are properly defined in terms of, so that the transformed nonsimilar boundary-layer equations give numerical solutions that are uniformly valid over the entire range of mixed convection intensity from forced convection limit to free convection limit for fluids of any Prandtl number from 0.001 to 10,000. The effects of mixed convection intensity and the Prandtl number on the velocity profiles, the temperature profiles, the wall friction, and the heat transfer rate are illustrated for both cases of buoyancy assisting and opposing flow conditions.
Mischkonvektion an einer vertikalen Platte für Fluide beliebiger Prandtl-Zahl
Zusammenfassung Für die kombinierte Zwangs- und freie Konvektion an einer isothermen senkrechten Platte wird ein Mischkonvektions-Parameter=( Ra) 1/4 (Re)1/2, mit=Pr/(1 +Pr) und=Pr/(1 +Pr)1/2 vorgeschlagen, den die gebräuchliche Richardson-Zahl, Gr/Re2, ersetzen soll. Dieser Parameter kann ohne weiteres auf die maßgebenden Kennzahlen für den relativen Einfluß der erzwungenen und der freien Konvektion reduziert werden,Ra 1/4/(Re 1/2 Pr 1/3) fürPr 1 und (RaPr)1/4/(RePr)1/2 fürPr 1. Weiterhin werden neue Koordinaten und abhängige Variablen als Funktion von definiert, so daß für die transformierten Grenzschichtgleichungen numerische Lösungen erstellt werden können, die über den gesamten Bereich der Mischkonvektion, von der freien Konvektion bis zur Zwangskonvektion, für Fluide jeglicher Prandtl-Zahl von 0.001 bis 10.000 gleichmäßig gültig sind. Der Einfluß der Intensität der Mischkonvektion und der Prandtl-Zahl auf die Geschwindigkeitsprofile, die Temperaturprofile, die Wandreibung und den Wärmeübergangskoeffizienten werden für die beiden Fälle der Strömung in und entgegengesetzt zur Schwerkraftrichtung dargestellt.

Nomenclature C f local friction coefficient - C p specific heat capacity - f reduced stream function - g gravitational acceleration - Gr local Grashoff number,g T w –T )x3/v2 - Nu local Nusselt number - Pr Prandtl number,v/ - Ra local Rayleigh number,g T w –T x 3/( v) - Re local Reynolds number,u x/v - Ri Richardson number,Gr/Re 2 - T fluid temperature - T w wall temperature - T free stream temperature - u velocity component in thex direction - u free stream velocity - v velocity component in they direction - x vertical coordinate measuring from the leading edge - y horizontal coordinate Greek symbols thermal diffusivity - thermal expansion coefficient - mixed convection parameter (Ra)1/4/Re)1/2 - pseudo-similarity variable,(y/x) - 0 conventional similarity variable,(y/x)Re 1/2 - dimensionless temperature, (T–T T W –T - unified mixed-flow parameter, [(Re) 1/2 + (Ra)1/4] - dynamic viscosity - kinematic viscosity - stretched streamwise coordinate or mixed convection parameter, [1 + (Re)1/2/(Ra) 1/4]–1=/(1 +) - density - Pr/(1 + Pr) w wall shear stress - stream function - Pr/(l+Pr)1/3 This research was supported by a grand from the National Science Council of ROC  相似文献   

20.
Incoherent phase transitions are more difficult to treat than their coherent counterparts. The interface, which appears as a single surface in the deformed configuration, is represented in its undeformed state by a separate surface in each phase. This leads to a rich but detailed kinematics, one in which defects such as vacancies and dislocations are generated by the moving interface. In this paper we develop a complete theory of incoherent phase transitions in the presence of deformation and mass transport, with phase interface structured by energy and stress. The final results are a complete set of interface conditions for an evolving incoherent interface.Frequently used symbols Ai,Ci generic subsurface of St - Bi undeformed phase-i region - C configurational bulk stress, Eshelby tensor - F deformation gradient - G inverse deformation gradient - H relative deformation gradient - J bulk Jacobian of the deformation - ¯K, Ki total (twice the mean) curvature of and Si - Lin (U, V) linear transformations from U into V - Lin+ linear transformations of 3 with positive determinant - Orth+ rotations of 3 - Qa external bulk mass supply of species a - ¯S bulk Cauchy stress tensor - S bulk Piola-Kirchhoff stress tensor - Si undeformed phase i interface - Ui relative velocity of Si - Unim+ linear transformations of 3 with unit determinant - ¯V, Vi normal velocity of and Si - intrinsic edge velocity of S and A i S - Wi volume flow across the phase-i interface - X material point - b external body force - e internal bulk configurational force - fi external interfacial force (configurational) - ¯g external interfacial force (deformational) - grad, div spatial gradient and divergence - gradient and divergence on - h relative deformation - ha, diffusive mass flux of species a and list of mass fluxes - ¯m outward unit normal to a spatial control volume - ¯n, ni unit normal to and Si - n subspace of 3 orthogonal to n - ¯qa external interfacial mass supply of species a - s ......... - ¯v, vi compatible velocity fields of and Si - ¯w, wi compatible edge velocity fields for and Ai - x spatial point - yi deformation or motion of phase i - y. material velocity - generic subsurfaces of - , i deformed body and deformed phase-i region - () energy supplied to by mass transport - symmetry group of the lattice - i, surface jacobians - lattice - () power expended on - spatial control volume - S deformed phase interface - lattice point density - interfacial power density - , A total surface stress - C configurational surface stress for phase 1 (material) - ¯Ci configurational surface stress (spatial) - Fi tangential deformation gradient - Gi inverse tangential deformation gradient - H incoherency tensor - ¯1(x), 1i(X) inclusions of ¯n(x) and n i (X) into 3 - K configurational surface stress for phase 2 (material) - ¯L, li curvature tensor of and Si - ¯P(x), Pi(X) projections of 3 onto ¯n(x) and ni (X) - ¯S, S deformational surface stress (spatial and material) - ¯a, a normal part of total surface stress - c normal part of configurational surface stress for phase 1 (material) - ei internal interfacial configurational force - ¯v, vi unit normal to and A i - (x),i(X) projections of 3 onto ¯n(x) and n i (X) - i normal internal force (material) - bulk free energy - slip velocity - i=(–1)i i ......... - a, chemical potential of species a and list of potentials - a, bulk molar density of species a and list of molar densities - i normal internal force (spatial) - surface tension - , i effective shear - referential-to-spatial transform of field - interfacial energy - grand canonical potential - l unit tensor in 3 - x, vector and tensor product in 3 - (...)., t(...) material and spatial time derivative - , Div material gradient and divergence - gradient and divergence on Si - (...), (...) normal time derivative following and Si - (...) limit of a bulk field asx ,xi - [...],...> jump and average of a bulk field across the interface - (...)ext extension of a surface tensor to 3 - tangential part of a vector (tensor) on and Si  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号