首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Applied Surface Science》2005,239(3-4):279-284
Fe0.3Co0.7 alloy nanowire arrays were prepared by ac electrodepositing Fe2+ and Co2+ into a porous anodic aluminum oxide (PAO) template with diameter about 50 nm. The surface of the samples were polished by 100 nm diamond particle then chemical polishing to give a very smooth surface (below ±10 nm/μm2). The morphology properties were characterized by SEM and AFM. The bulk magnetic properties and domain structure of nanowire arrays were investigated by VSM and MFM respectively. We found that such alloy arrays showed strong perpendicular magnetic anisotropy with easy axis parallel to nanowire arrays. Each nanowire was in single domain structure with several opposite single domains surrounding it. Additionally, we investigated the domain structure with a variable external magnetic field applied parallel to the nanowire arrays. The MFM results showed a good agreement with our magnetic hysteresis loop.  相似文献   

2.
Al-Si alloy samples with a silicon content from 8 to 15 wt % were obtained by the Stepanov method at solidification rates of 102 and 103 µm s?1. Tensile and bending strain diagrams were studied at a strain rate of about 10?4 s?1. The microstructure of the samples was investigated. It was found that the silicon content in the eutectic structure of the alloy grows as the solidification rate increases. The yield stress and the tensile strength increase as the silicon content grows.  相似文献   

3.
We have investigated the magnetic properties of Fe38.5Pt, Fe39.5Pt and Fe50.0Pt (at%) alloys after various heat treatment conditions using a vibrating sample magnetometer, and correlated these properties with the microstructures of the alloys by transmission electron microscopy. The Fe50Pt alloy shows poor magnetic hardness regardless of the heat treatment conditions. The magnetic hardness of the Fe39.5Pt alloy shows a maximum value after annealing for 10 h at 873 K, while it monotonically decreases after annealing at 1073 K. The alloy with the highest coercivity was composed of a single phase γ1 with an average domain size of approximately 10 nm. The electron diffraction results indicate that the alloy is frustrated with accumulated stress, induced by a cubic → tetragonal transformation which occurs without twinning. On the other hand, when stress is relieved by twin formation after prolonged aging, the coercivity decreases. By annealing at 1073 K, the well known polytwin structure evolves. However, only poor hard magnetic properties are observed when this polytwin structure appears. Hence, the highest coercivity is attributed to the formation of nanoscale L10 ordered antiphase domains which is expected to be a highly anisotropic single domain magnetic particle.  相似文献   

4.
The behaviour of an as-cast ABaX422 Mg alloy has been evaluated with regard to its compressive strength in the temperature range 25–250?°C and hot working characteristics in the range 260–500?°C. The microstructure of the as-cast alloy has intermetallic phases Mg17Ba2 and (Al, Mg)2Ca at the grain boundaries and is fine grained. The alloy has compressive strength better than AZ31 with Ca and Zn, which was attributed to the finer grain size. A processing map developed to characterize its hot working behaviour revealed two dynamic recrystallization domains in the temperature and strain rate ranges of (1) 300–390?°C/0.0003–0.001?s?1 and (2) 400–500?°C/0.0003–0.5?s?1. In the first domain, basal?+?prismatic slip occurs along with recovery by climb while in the second domain, second-order pyramidal slip dominates and recovery occurs by cross-slip. The apparent activation energy estimated in Domains 1 and 2 are 169 and 263?kJ/mol respectively, both being higher than that for self-diffusion suggesting that the intermetallic particles in the matrix cause considerable back stress. Bulk metal working of this alloy may be done in Domain 2 which ensures high workability while finish working may be done in Domain 1 in order to achieve a fine grained component. The alloy exhibits flow instability regimes at higher strain rates, in both the lower and higher temperature regions of the processing map, the manifestation being adiabatic shear band formation and flow localization respectively.  相似文献   

5.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

6.
The structure, Young’s modulus defect, and internal friction in aluminum-germanium alloys have been studied under conditions of longitudinal elastic vibrations with a strain amplitude in the range of 10?6?3 × 10?4 at frequencies about 100 kHz. The ribbon-shaped samples of the alloys with the germanium content from 35 to 64 wt % have been produced by drawing from the melt by the Stepanov method at a rate of 0.1 mm/s. It has been shown that the dependences of the Young’s modulus defect, logarithmic decrement, and vibration stress amplitude on the germanium content in the alloy at a constant strain amplitude have an extremum at 53 wt % Ge. This composition corresponds to the eutectic composition. The dependences of the Young’s modulus defect, the decrement, and vibration stress amplitude at a constant microstrain amplitude have been explained by the vibrational displacements of dislocations, which depend on the alloy structure.  相似文献   

7.
In this paper, domain rotations in Tb0.3Dy0.7Fe2 alloy under a compressive stress applied along various crystallographic axes alone have been investigated on the basis of 3D Stoner-Wohlfarth model by following the conventional free energy minimization procedure. The dependence of both the domain rotations and the strains caused by the compressive stress on the stress directions has been revealed. And it has been found that the anisotropic magnetomechanical effect arises from the dependence of the stress induced anisotropy on the stress direction. This study is very helpful for the better understanding of magnetic behavior of magnetostrictive materials under both stress and field.  相似文献   

8.
ABSTRACT

The thermal compression behaviour of Al–Zn–Mg alloy was studied on a thermal simulator machine at the temperature range of 380–540°C and strain rate range of 0.01–10?s?1. The constitutive equation and 3D processing map of the alloys were established. The microstructure characteristics of the alloy were studied by metallographic observation, electron back-scatter diffraction (EBSD) analysis and transmission electron microscopy (TEM) microstructure analysis. The results show that the peak stress of high-temperature deformation of alloy decreases with the increase of deformation temperature and increases with the increase of strain rate. The dynamic recovery of the alloy occurs at the temperature range of 380–460°C and the strain rate range of 0.01–0.1?s?1. The dynamic recrystallization of the alloy occurs at the temperature range of 460–500°C and the strain rate range of 0.01–0.1?s?1. The alloy maintains fine and uniform recrystallized grains at a temperature range of 460–480°C and a strain rate range of 0.01–0.1?s?1, which is suitable for hot working.  相似文献   

9.
Carefully designed indentation creep experiments and detailed finite-element computations were carried out in order to establish a robust and systematic method to extract creep properties accurately during indentation creep tests. Samples made from an Al–5.3?mol%?Mg solid-solution alloy were tested at temperatures ranging from 573 to 773?K. Finite-element simulations confirmed that, for a power-law creep material, the indentation creep strain field is indeed self-similar in a constant-load indentation creep test, except during short transient periods at the initial loading stage and when there is a deformation mechanism change. Self-similar indentation creep leads to a constitutive equation from which the power-law creep exponent n, the activation energy Q c for creep, the back or internal stress and so on can be evaluated robustly. The creep stress exponent n was found to change distinctively from 4.8 to 3.2 below a critical stress level, while this critical stress decreases rapidly with increasing temperature. The activation energy for creep in the stress range of n = 3.2 was evaluated to be 123?kJ?mol?1, close to the activation energy for mutual diffusion of this alloy, 130?kJ?mol?1. Experimental results suggest that, within the n = 3.2 regime, the creep is rate controlled by viscous glide of dislocations which drag solute atmosphere and the back or internal stress is proportional to the average applied stress. These results are in good agreement with those obtained from conventional uniaxial creep tests in the dislocation creep regime. It is thus confirmed that indentation creep tests of Al–5.3?mol%?Mg solid-solution alloy at temperatures ranging from 573 to 773?K can be effectively used to extract material parameters equivalent to those obtained from conventional uniaxial creep tests in the dislocation creep regime.  相似文献   

10.
Specimens of Fe-3·2 wt% Si alloy single crystals of various orientations, both with 18 ppm C and decarburized, have been deformed in compression ( \(\dot \varepsilon \) ~ 10?4 s?1) at different temperatures between 125 K and 293 K. It has been found that the magnitude of CRSS, the choice of the slip planes and the shape of the stress-strain curves depend on the angle between the compression axis and the Burgers vector (angleξ). The stress normal to the maximum resolved shear stress plane is strongly altered on changing the angleξ. The discussion of the obtained experimental results seems to indicate that the normal stress influences the structure of screw dislocation core and subsequently the dislocation mobility.  相似文献   

11.
The antiphase domain structure in the Ni3Mn alloy with superstructure L12 with various manganese contents has been studied. It has been found that a deviation of the alloy composition from the stoichiometry leads to the formation of manganese oxides at the antiphase domain boundaries and grain boundaries. With an increase in the antiphase domain sizes, the domain size distribution function changes from the normal to lognormal, and the degree of long-range atomic order decreases.  相似文献   

12.
Response of Zr–2.5 wt.% Nb alloy pressure tube, used in PHWR nuclear reactors, to 315 keV Ar9+ ion irradiation at room temperature was investigated in the fluence range of 3.1?×?1015–4.17?×?1016 Ar9+?cm?2. Changes in microstructural parameters, viz., the size of coherently scattering domains, microstrain and dislocation density, upon irradiation were ascertained through grazing incidence X-ray diffraction. In general, a decrease in domain size was observed with fluence with a corresponding increase in microstrain and dislocation density. Residual stress measurement showed the development of compressive stresses in place of tensile after irradiation. Transmission electron microscopy showed the formation of dislocation loops of ?a?-type and ?c?-type during irradiation. The hardness of irradiated samples, probed through nanoindentation technique, was found to be higher in comparison with unirradiated samples. The above findings have been rationalised on the basis of the defects generated during the Ar9+ ion irradiation.  相似文献   

13.
Optical-microscope observations with polarized light have shown that the birefringent, twin-domain structure of sodium tungsten bronzes is exhibited by Na-deficient, epitaxial surface films and hence is not a bulk property as had been suggested elsewhere. The film is translucent, 10-2-10-3 mm thick or less, and often laminates to a multi-film layer The domain boundaries are sensitive to lateral stress and, apparently, to minute changes in the substrate structure. These and related properties of the film and the substrate are presented.  相似文献   

14.
The evolution of elastic-plastic shock compression waves in a VT6 titanium alloy is measured at a distance of 0.16–17 mm at room temperature and 600°C. The results of measuring the decay of an elastic precursors and the compression rate in a plastic shock wave are used to determine the temperature–rate dependences of the flow stress in the strain-rate range 103–107s–1. New data for the spall strength of the alloy at normal and elevated temperatures are obtained.  相似文献   

15.
The radiation damage and disordering phenomena produced at room temperature during Fe+, Bi++ and Xe+ ion implantations in a Fe-40 at.% A1 ordered alloy were studied by in situ transmission electron microscopy. Progressive, but not total disordering was achieved in the thinnest areas of the specimens during high fluence implantations (> 1015 ions/cm2). Simultaneously, the athermal formation of a new phase occurs in the case of Fe+ and Bi++ implantations. The diffusion-less mechanism suggests a martensitic like transformation.

During post-implantation annealing, reordering and long-range order domain growth occurred in the temperature range up to 570 K. Above 670 K another phase appeared, which was stable up to 1070 K. The results are discussed and compared with those obtained on melt-quenched or neutron irradiated specimens of the same alloy.  相似文献   

16.
Observations of domain structures in single crystal and polycrystalline samples of Fe-N alloy were made. It was found that the magnetization direction is perpendicular to the surface of Fe16N2 nitrides. The domain structure is not subject to essential changes during ageing.  相似文献   

17.
A static model of a critically polarized ceramic is used to analyze the behavior of the piezocoefficient d 33 of lead titanate zirconate ceramic exposed to a longitudinal compressive stress σ and a quantitative analysis is made of the 90° and 180° domain reorientations. It is shown that for TsTG-83G ceramic a 180° antiparallel domain structure forms at compressive stresses σ>108 N/m2. Zh. Tekh. Fiz. 69, 46–49 (June 1999)  相似文献   

18.
Structural materials for commercial reactor are usually used under conditions of stress. However, the evaluation of the microstructural evolution and the changes in the mechanical property induced by the neutron irradiation in structural materials does not typically consider the effect of stress since it is difficult to carry out neutron irradiation testing under conditions of stress. In this study, a model alloy (Fe–0.6Cu) of reactor pressure vessels was irradiated by neutrons at 573?K with a dose of about 3.2?×?1021?neutrons/m2 (E?>?0.1?MeV), corresponding to 5.2?×?10?4?dpa (displacement per atom), with and without tension stress. The tension stress caused elastic deformation in the specimens. The size of microvoids in the irradiated sample with tension stress was larger than that in the sample without tension stress. However, the effects of stress on the formation of Cu precipitates and the changes in the mechanical property were not clear.  相似文献   

19.
Summary  This work reports the electronic structure of GaInAsSb quaternary alloy by recursion method. A five-orbital sp3s* per atom model was used in the tight-binding representation of the Hamiltonian. The local density of states (LDOS), integrated density of states (IDOS) and structural energy (ST.E) were calculated for Ga, In, As and Sb sites in Ga0.5 In0.5 As0.5 Sb0.5 and GaInAsSb lattice matched to GaAs and the same alloy lattice matched to GaSb. There are 216 atoms in our cluster arranged in a zincblend structure. The results are in good agreement with available information about the alloy.  相似文献   

20.
The effect of cold plastic deformation by upsetting (e = 1.13) on structure and hybridised bonds of carbon in the fcc Invar Fe-30.9%Ni-1.23% C alloy was studied by means of X-ray phase analysis and X-ray photoelectron spectroscopy. Carbon precipitates along grain boundaries and inside of grains in the alloy after annealing and plastic deformation were revealed. The presence of mainly sp2- and sp3-hybridised C–C bonds attributing to graphite and amorphous carbon as well as the carbon bonds with impurity atoms and metallic Fe and Ni atoms in austenitic phase were revealed in the annealed and deformed alloy. It was shown for the first time that plastic deformation of the alloy results in partial destruction of the graphite crystal structure, increasing the relative part of amorphous carbon, and redistribution of carbon between structural elements as well as in a solid solution of austenitic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号