首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calorimetric titration experiments have been performed in pH 2.0 and 7.2 phosphate buffer solutions at 298.15 K to calculate the complex stability constants (KS) and thermodynamic parameters (ΔG°, ΔH°, and TΔS°) for the stoichiometric 1:1 inclusion complexation of water-soluble calix[4]arene tetrasulfonate (CAS) and thiacalix[4]arene tetrasulfonate (TCAS) with some diazacycloalkane guests, i.e. piperazine (1), homopiperazine (2) and 1,5-diazacyclooctane (3). The results indicated that complexes of CAS and TCAS with diazacycloalkane guests were enthalpy-stabilized, and an acidic environment was more favorable to host-guest complexation than a neutral one. CAS forms more stable complexes with guest molecules than TCAS due to the more favorable enthalpic gain.  相似文献   

2.
Two novel polymeric complexes, [Gd(HsTCAS)(H2O)7]·4H2O 1 and [Gd(HsTCAS) (CH3COCH3)(H2O)6]·6H2O 2 (H4TCAS = p-sulfonatothiacalix[4]arene), have been synthesized and characterized by single-crystal X-ray diffraction analyses. Complex 1 crystallizes in monoclinic, space group C2/m with a = 20.2308(12), b = 19.0894(10), c = 12.2448(7)A, β = 101.847(3)°, V = 4628.1(5)A^3, C24H43GdO27S8, Mr = 1169.25, Z = 4, Dc = 1.690 g/cm^3, F(000) = 2380,μ = 1.879 mm^-1, the final R = 0.0404 and wR = 0.1038 for 5127 observed reflections with I 〉 2σ(I). Complex 2 is pseudo-isostructural with complex 1.  相似文献   

3.
Heterogeneous self-assembly of thiacalix[4]arene-p-tetrasulfonate (TCAS), Ag(I), and Ln(III) (= Nd(III), Yb(III)) in aqueous solutions conveniently afforded ternary complexes emitting Ln(III)-centered luminescence in the near-infrared (NIR) region. A solution-state study revealed that the Ag(I)-Nd(III)-TCAS system gave a complex Ag(I)(4)·Nd(III)·TCAS(2) in a wide pH range of 6-12. In contrast, the Ag(I)-Yb(III)-TCAS system gave Ag(I)(2)·Yb(III)(2)·TCAS(2) at a pH of around 6 and Ag(I)(2)·Yb(III)·TCAS(2) at a pH of approximately 9.5. The structures of the Yb(III) complexes were proposed based on comparison with known Ag(I)-Tb(III)-TCAS complexes that show the same self-assembly behavior. In Ag(I)(2)·Yb(III)(2)·TCAS(2), two TCAS ligands sandwiched a cyclic array of a Ag(I)-Ag(I)-Yb(III)-Yb(III) core. In Ag(I)(2)·Yb(III)·TCAS(2), Yb(III) was accommodated in an O(8) cube consisting of eight phenolate O(-) groups from two TCAS ligands linked by two S-Ag-S linkages. Crystallographic analysis of Ag(I)(4)·Nd(III)·TCAS(2) revealed that the structure was similar to Ag(I)(2)·Yb(III)·TCAS(2) but that it had four instead of two S-Ag-S linkages. The number of water molecules coordinating to Ln(III) (q) estimated on the basis of the luminescent lifetimes was as follows: Ag(I)(4)·Nd(III)·TCAS(2), 0; Ag(I)(2)·Yb(III)(2)·TCAS(2), 2.4; and Ag(I)(2)·Yb(III)·TCAS(2), 0. These findings were compatible with the solution-state structures. The luminescent quantum yield (Φ) for Ag(I)(4)·Nd(III)·TCAS(2) was 4.9 × 10(-4), which is the second largest value ever reported in H(2)O. These findings suggest that the O(8) cube is an ideal environment to circumvent deactivation via O-H oscillation of coordinating water. The Φ values for Ag(I)(2)·Yb(III)(2)·TCAS(2) and Ag(I)(2)·Yb(III)·TCAS(2) were found to be 3.8 × 10(-4) and 3.3 × 10(-3), respectively, reflecting the q value. Overall, these results indicate that the ternary systems have the potential for a noncovalent strategy via self-assembly of the multidentate ligand, Ln(III), and an auxiliary metal ion to obtain a highly efficient NIR-emissive Ln(III) complex that usually relies on elaborate covalent linkage of a chromophore and multidentate ligands to expel coordinating water.  相似文献   

4.
The complex stability constants (K(S)) and thermodynamic parameters (DeltaH degrees and TDeltaS degrees) for 1:1 intermolecular complexation of three water-soluble calixarenes, that is, p-sulfonato calix[4]arene (C4AS), p-sulfonato thiacalix[4]arene (TCAS), and p-sulfonato calix[5]arene (C5AS), with dipyridines (4-DPD and 2-DPD) and 1,10-phenanthroline (Phen) have been determined by means of titration microcalorimetry in an acidic buffer solution (pH = 2.0) at 298.15 K, and their binding modes have been investigated by (1)H NMR and 2D ROESY NMR spectroscopy. The results obtained indicate that 4-DPD, 2-DPD, and Phen are included in the cavity of C5AS with the different patterns, this is, accumbent for 4-DPD, acclivitous for 2-DPD and Phen, while Phen is included upright in the cavity of C4AS. The K(S) values decrease with increasing cavity size of host molecules but enhance with extending conjugation degree of guest molecules, and thus C4AS exhibits an exceptionally high Phen/4-DPD selectivity of 22.5. Thermodynamically, the complexation of DPDs/Phen with the water-soluble calixarenes is obviously enthalpy-driven, but the molecular selectivity is mainly governed by the entropy term.  相似文献   

5.
Four crystalline complexes were prepared by the inclusion complexation of the 1,10-phenanthrolinium ion (Phen) with p-sulfonatothiacalix[4]arene (TCAS) (2 from a solution at pH 1-2 and 4 from 1 M HCl) and with p-sulfonatocalix[5]arene (C5AS) (3 from a solution at pH 1-2 and 5 from 1 M HCl) upon varying the acidity of the solution. By combining the results obtained for complexes 2-5 with those for our previously reported complex (1), p-sulfonatocalix[4]arene (C4AS) complexed to Phen, it was revealed that p-sulfonatocalixarenes (CASs) form "bis-molecular" capsules (1, 2, and 3) around Phen at pH 1-2, whereas complexes 4 and 5 display distinct host-guest inclusion behavior at higher acid concentrations. The degree of compactness of the capsules increases with the enlargement of the calixarene cavity, which is affected significantly by both the penetration depth of Phen and the structure of the Phen dimer. Furthermore, the complexation behavior of TCAS/C5AS with Phen in 1 M DCl was investigated by using NMR spectroscopy, and was discussed in comparison with the previously reported results obtained from solutions at pH 2.0.  相似文献   

6.
Thiacalix[4]arenetetrasulfonate (TCAS) has been examined as a pre-column chelating reagent for the determination of trace metal ions by kinetic differentiation mode (KD) ion-pair reversed-phase high-performance liquid chromatography (HPLC) with spectrophotometric detection. Among 14 kinds of common metal ions tested here, viz. Al(III), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Hg(II), Mg(II), Mn(II), Ni(II), Pb(II), V(V), and Zn(II) ion, only Ni(II) ion was detected as the TCAS chelate in the HPLC separation stage in spite of TCAS forming the chelates with various metal ions except for Al(III), Ca(II), and Mg(II) at the pre-column chelation stage. The undetected metal-TCAS chelates seemed to be dissociated on an HPLC column where no added TCAS was present in the mobile phase because of their kinetic unstability. The calibration graph for Ni(II) ion gave a wide linear dynamic range (40-20,000 nM) with the very low detection limit (DL) (3σ base-line fluctuation) to be 5.4 nM (0.32 ng ml−1). The practical applicability of the KD-HPLC method with TCAS was demonstrated with the determination of trace Ni in coal fly ash.  相似文献   

7.
The methods of cyclic voltammetry, electrolysis, and spectrophotometry were used to study electrochemical properties of (TCAS + Fe3+ + dipy), (CCAS + Fe3+ + dipy), and (CCAS + Fe3+ + [Co(dipy)3]3+) triple systems (where TCAS is n-sulfonatothiacalix[4]arene, CCAS is tetracarboxylate n-sulfonatocalix[4]arene, and dipy = α,α′-dipyridyl) in an aqueous solution. One-electron reduction of Fe(III) in the (TCAS + Fe3+ + dipy) system at pH 2.5 results in electroswitching of iron ions from the lower TCAS ring to the upper ([Fe(dipy)3]2+). Reverse electrochemical switching of the system is impossible due to mediator ([Fe(dipy)3]2+/3+) oxidation of TCAS. Reverse electroswitching of Fe(III) ions from unbound to bound state as ([Fe(dipy)3]2+) with CCAS has been revealed in the system (CCAS + Fe3+ + dipy) (pH 1.7) upon single-electron transfer, whereas reversible electroswitching by the upper rim of CCAS from one complex ion ([Co(dipy)3]3+) to another ([Fe(dipy)3]2+) has been demonstrated in the system ([Co(dipy)3]3+ + CCAS + Fe3+ upon double-electron transfer. In all systems, electric switching was accompanied by synchronous color switching.  相似文献   

8.
The peroxidase-like catalytic activity of metal complexes of thiacalix[4]arenetetrasulfonate (TCAS[4]) on a modified anion-exchanger (Me(n+)-TCAS[4]A-500; Me(n+) = H2, Fe3+, Fe2+, Mn3+, Co3+, Co2+, Cu2+, Zn2+, Ni2+) for the oxidation of p-hydroxyphenyl derivatives to produce fluorescent substances in the presence of hydrogen peroxide has been investigated. Among the Me(n+)-TCAS[4]A-500 tested, Fe(3+)-TCAS[4]A-500 exhibited the highest level of catalytic activity for the oxidation of p-acetoamidophenol in a carbonate buffer solution of pH 10. The catalytic activity of Fe(3+)-TCAS[4]A-500 was then used for the spectrofluorometric determination of hydrogen peroxide. The calibration curve for the Fe(3+)-TCAS[4]A-500 method was linear over a range spanning from 0.1 to 5.0 microg of hydrogen peroxide in a 1.0 ml sample solution.  相似文献   

9.
Two coordination compounds based on p‐sulfonatothiacalix[4]arene (TCAS) were synthesized by hydrothermal reactions of TCAS with M2+ cations (M = Cu for 1 , M = Co for 2 ) in the presence of [PhCH2N(CH3)3]+. Single‐crystal X‐ray analyses revealed that both compounds, 1 and 2 , are isomorphous and crystallize in the same space group . The tetranuclear cluster units are connected into layer networks through complicated hydrogen‐bonding and π–π interactions. The results of thermogravimetric measurements demonstrate that 1 and 2 have the high thermal stabilities.  相似文献   

10.
The influence of nonionogenic, anionic and cationic surfactants on the magnetic relaxation and luminescence properties of gadolinium(III), terbium(III), and dysprosium(III) complexes with p-sulfonatothiacalix[4]arene (TCAS) was studied. It was shown that the presence of both neutral and anionic surfactant does not influence the magnetic relaxation properties of GdTCAS as well as on the luminescence intensity of the TbTCAS and DyTCAS complexes. The presence of cationic surfactant at the concentration less than critical micellar concentration led to the formation of associates with stoichiometric composition with the Tb (Dy, Gd) TCAS complexes. These associates are characterized by more intensive luminescence, as compared to the initial TbTCAS and DyTCAS complexes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 555–560, March, 2008.  相似文献   

11.
The compositions and photophysical properties of luminescent ternary complexes of thiacalix[4]arene‐p‐sulfonate (TCAS), TbIII, and AgI ions were determined. At pH 6, AgI2?TbIII2?TCAS2 formed. Moreover, at pH 10, in the presence of a 20‐fold excess of AgI and a 50‐fold excess of TCAS with respect to TbIII, AgI2?TbIII?TCAS2 formed as the main luminescent species. The structure of these complexes was proposed: two TCAS ligands are linked by two S–AgI–S linkages to adopt a double‐cone supramolecular structure. Furthermore, each TbIII ion in the former complex accepts O?, S, O? donation, whereas in the latter, the TbIII center accepts eightfold O? donation. The luminescence quantum yield (Φ) of AgI2?TbIII2?TCAS2 (0.16) was almost equal to that of TbIII?TCAS, but the luminescence lifetime τ of the former (=1.09 ms) was larger than that of the latter. For AgI2?TbIII?TCAS2, the yield Φ (=0.11) was small, which is attributed to the low efficiency of photosensitization (η=0.11). However, the τ value (4.61 ms) was exceptionally large and almost equal to the natural luminescence lifetime of TbIII (4.7 ms), which is due to the absence of coordinating water molecules (q=0.1). This is compatible with the proposed structure in which the TbIII ion is shielded by a supramolecular cage that expels coordinated water molecules responsible for luminescence quenching.  相似文献   

12.
The adsorption capacity of conductive polyaniline doped by thiacalix[4]arene tetrasulfonate (PANI–TCAS) towards Cu(II), Cd(II), Co(II) and Cr(III) was investigated through batch adsorption techniques, and the extent of adsorption was measured as a function of pH, initial metal ion concentration and contact time. It was found that the metal ion removal reached maximum at pH 8.0 and remained constant after 60 min. Experimental data was fitted to Langmuir, Freundlich, Redlich–Peterson and Temkin equation models with the maximum adsorption capacity calculated to be 833.3, 555.5, 526.3 and 500 for Cr3+, Cu2+, Co2+ and Cd2+, respectively, from the Langmuir isotherm model. The kinetic study was carried out through pseudo‐first‐order, pseudo‐second‐order, Elovich kinetic and intraparticle diffusion models in which the related correlation coefficient for each kinetic model showed that the pseudo‐second‐order rate equation was better described by the adsorption process. XRD spectra, SEM and TEM images of the adsorbent revealed a homogeneous distribution of nano‐sized particle structure with a porous surface, the morphology of which brings about high adsorption capacity for the PANI–TCAS molecular nanocomposite which in turn was observed by the AFM micrograph. The conductivity of thiacalix[4]arene tetrasulfonate doped polyaniline after metal ion adsorption was also assessed, and the four‐probe measurement technique revealed conductivity increment as high as 102.4 S cm?1 with a 100 order of magnitude enhancement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Reactions of cobalt(II) nitrate or zinc(II) nitrate, tetrasodium p-sulfonatothiacalix[4]arene (Na4H4TCAS), and methylviologen dihexafluorophosphate (MV(PF6)2) afforded two isomorphous complexes, {[M(H2O)6]2 + [MV]2 + [(MV)2M2(H2O)4(H2TCAS)2]4 ? }·14H2O (M = Co, 1; Zn, 2). In these two complexes, each two thiacalixarenes form a dimer with C i symmetry through the coordination of sulfonate groups, and the above dimers further extend their structures through second-sphere coordination and π…π stacking interactions into three-dimension nets.  相似文献   

14.
Calorimetric titration and NMR experiments in aqueous phosphate buffer (pH 7.2) at 298.15 K have been done to determine the binding mode, complex stability constants and thermodynamics (ΔG°, ΔH°, and TΔS°) for 1:1 inclusion complexation of water-soluble calix[n]arenesulfonates (CnAS, n = 4 and 6) and thiacalix[4]arene tetrasulfonate (TCAS) with acethylcholine, carnitine, betaine and benzyltrimethylammonium ion. The results show the inclusion complexations are driven by enthalpy (ΔH° < 0), accompanied by negative entropic changes (ΔS° < 0). The binding affinities (C4AS > C6AS > TCAS) are discussed from the viewpoint of CH-π/π-π interactions, electrostatic interactions and size/shape-fit relationship between host and guest.  相似文献   

15.
An interesting T4(2)5(2) water tape formed by fused cyclic water pentamers and tetramer was self-assembled in a new inorganic host [Ni(L)(phen)2]·5H2O (L = L-cysteic acid) and characterized by X-ray diffraction. Each [Ni(L)(phen)2] molecule crystallizes with five water molecules with a molecular formula of [Ni(L)(phen)2]·5H2O. The T4(2)5(2) water tape and [Ni(L)(phen)2] molecules assemble into a network of water tapes sandwiched between [Ni(L)- (phen)2] tapes. The network is stabilized by π-π stacking between [Ni(L)(phen)2] molecules and three types of hydrogen-bonding interactions between [Ni(L)(phen)2] molecules, water molecules, and water and [Ni(L)(phen)2] molecules.  相似文献   

16.
The enantioselective synthesis of completely ortho‐fused [9]‐ and [11]helicene‐like molecules has been achieved through a rhodium‐mediated, intramolecular, double [2+2+2] cycloaddition of phenol‐ or 2‐naphthol‐linked hexaynes. Crystal structures and photophysical properties of these [9]‐ and [11]helicene‐like molecules have also been disclosed.  相似文献   

17.
A linearly linked triscalix[4]arene, in which each calix[4]arene unit possesses both axial chirality and inherent chirality, was synthesized by repeated use of two stereoselective Williamson etherification on calix[4]arene. In the crystal lattice of the biscalix[4]arene intermediate, there are interesting alternate layers of biscalixarene molecules and solvent molecules in the ab plane.  相似文献   

18.
The novel linear, circular, hooped, and helical molecules based on oligo[8]thio- phene were theoretically studied for the applications of charge transfer devices. To investigate the influence of topology for oligo[8]thiophene derivatives, the geometry structures, frontier molecular orbital (FMO) energies, charge transport properties, and stability property were predicted by density functional theory methods. The calculated results reported herein show that the oligo[8]thiophene derivative with linear structure has smaller energy gap, and fused oligo[8]thiophene derivative with circular structure has the smallest reorganization energy among the designed molecules. We have also studied the stability properties of the designed molecules, and oligo[8]thiophene derivatives are more stable tharJ the fused oligo[8]thiophene derivatives.  相似文献   

19.
A novel [2]pseudorotaxane of cucurbit[6]uril(CB[6]) and 1‐butyl‐3‐methyl‐imidazolium bromide ([C4mim]Br) was synthesized by directly mixing the host and the guest molecules in non‐aqueous system. Structural characterizations of the [2]pseudorotaxane were carried out by 1D, 2D NMR and X‐ray crystallography techniques both in solution and in crystal structure. The crystal structure demonstrated that CB[6] and [C4mim]Br formed a complex with the ratio 1:1, in which one guest [C4mim]Br was included inside the CB[6], while two other [C4mim]Br molecules were free and surrounded the [2]pseudorotaxane as solvent molecules, which could stabilize the crystal structure through hydrogen bonds. Moreover, parallel solvent channels consisting by free [C4mim]Br molecules occupied the pores among the frame of the pseudorotaxanes and formed zigzag lines in the crystal structure. [C4mim]Br can serve as not only the guest reactant but also the solvent in the formation of [2]pseudorotaxane formation.  相似文献   

20.
The adlayers formed by a series of aza- and/or oxo-bridged calix[2]arene[2]triazines on Au(111) surfaces were investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. 1,3-Alternate configurations of these molecules are preserved on gold surfaces as in their three-dimensional crystals. STM images show that the cavity sizes of these molecules are finely tuned by substituting the bridging nitrogen atom with oxygen atoms, which change the strengths and densities of the intermolecular hydrogen bonds. Hydrogen bond interaction influences the molecular orientation and conformation in the adlayers, and it plays a key role in the formation of these two-dimensional supramolecular architectures. Coadsorption of calix[2]arene[2]triazine with 1,3,5-tris(5-carboxyamyloxy)benzene (TCAB) intervenes with the intermolecular hydrogen bond formations among the calix[2]arene[2]triazine molecules and consequently causes a conformational transition of the calixarene molecules from rhombic to square. These results demonstrate the role of hydrogen bonds in molecular assembly formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号