首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas-phase reactivity of two aromatic carbon-centered σ,σ-biradicals (meta-benzyne analogs) and a related monoradical towards small oligonucleotides of differing lengths was investigated in a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer coupled with laser-induced acoustic desorption (LIAD). The mono- and biradicals were positively charged to allow for manipulation in the mass spectrometer. The oligonucleotides were evaporated into the gas phase as intact neutral molecules by using LIAD. One of the biradicals was found to be unreactive. The reactive biradical reacts with dinucleoside phosphates and trinucleoside diphosphates mainly by addition to a nucleobase moiety followed by cleavage of the glycosidic bond, leading to a nucleobase radical (e.g., base-H) abstraction. In some instances, after the initial cleavage, the unquenched radical site of the biradical abstracts a hydrogen atom from the neutral fragment, which results in a net nucleobase abstraction. In sharp contrast, the related monoradical mainly undergoes facile hydrogen atom abstraction from the sugar moiety. As the size of the oligonucleotides increases, the rate of hydrogen atom abstraction from the sugar moiety by the monoradical was found to increase due to the presence of more hydrogen atom donor sites, and it is the only reaction observed for tetranucleoside triphosphates. Hence, the monoradical only attacks sugar moieties in these substrates. The biradical also shows significant attack at the sugar moiety for tetranucleoside triphosphates. This drastic change in reactivity indicates that the size of the oligonucleotides plays a key role in the outcome of these reactions. This finding is attributed to more compact conformations in the gas phase for the tetranucleoside triphosphates than for the smaller oligonucleotides, which result from stronger stabilizing interactions between the nucleobases.
Graphical Abstract ?
  相似文献   

2.
The chemical composition of the solution has a critical impact on the electrospray desorption efficiency of oligonucleotides. Several physiochemical properties of various organic modifiers were investigated with respect to their role in the desorption process of oligonucleotides. The Henry’s Law Constant, which reflects the volatility of alkylamines, was found to have a prominent effect on both the electrospray charge state distribution and desorption efficiency of oligonucleotides. Alkylamines with higher $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ values such as hexylamine, piperidine, and imidazole reduced the charge state distribution by forming complexes with the oligonucleotide and dissociating from it in the gas phase, while alkylamines with extremely low $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ values reduced the electrospray charge state distribution by facilitating ion emission at an earlier stage of the electrospray desorption process. Ion-pairing agents with moderate $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ values do not alter the electrospray charge state distribution of oligonucleotides and their ability to enhance oligonucleotide ionization followed the order of decreasing $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ values. The Henry’s Law Constant also correlated to the impact of the acidic modifiers on oligonucleotide ionization efficiency. Ionization enhancement effects were observed with hexafluoroisopropanol, and this effect was attributed to its low $ \mathrm{k}_{\mathrm{H,cc}}\left( {\mathrm{aq}/\mathrm{gas}} \right) $ and moderate acidity. The comprehensive effects of both alkylamine and hexafluoroisoproapnol on the electrospray ionization desorption of oligonucleotides were also evaluated, and acid-base equilibrium was found to play a critical role in determining these effects.   相似文献   

3.
The reactivity of the three distonic isomers of the pyridine radical cation toward tetrahydrofuran is compared in solution and in the gas phase. In solution, the distonic ions were generated by UV photolysis at 300 nm from iodo-precursors in acidic 50:50 tetrahydrofuran/water solutions. In the gas phase, the ions were generated by collisionally activated dissociation (CAD) of protonated iodo-precursors in an FT-ICR mass spectrometer, as described in the literature. The same major reaction, hydrogen atom abstraction, was observed in solution and in the gas phase. Attempts to cleave the iodine atom from the 2-iodopyridinium cation in the gas phase and in solution yielded the 2-pyridyl cation in addition to the desired 2-dehydropyridinium cation. In the gas phase, this ion was ejected prior to the examination of the desired ion’s chemical properties. This was not possible in solution. This study suggests that solvation effects are not significant for radical reactions of charged radicals. On the other hand, the even-electron ion studied, the 2-pyridyl cation, shows substantial solvation effects. For example, in solution, the 2-pyridyl cation forms a stable adduct with tetrahydrofuran, whereas in the gas phase, only addition/elimination reactions were observed.   相似文献   

4.
Significant effort is being employed to utilize the inherent speed and sensitivity of mass spectrometry for rapid structural determination of proteins; however, a thorough understanding of factors influencing the transition from solution to gas phase is critical for correct interpretation of the results from such experiments. It was previously shown that combined use of action excitation energy transfer (EET) and simulated annealing can reveal detailed structural information about gaseous peptide ions. Herein, we utilize this method to study microsolvation of charged groups by retention of 18-crown-6 (18C6) in the gas phase. In the case of GTP (CEGNVRVSRE LAGHTGY), solvation of the 2+ charge state leads to reduced EET, whereas the opposite result is obtained for the 3+ ion. For the mini-protein C-Trpcage, solvation by 18C6 leads to dramatic increase in EET for the 3+ ion. Examination of structural details probed by molecular dynamics calculations illustrate that solvation by 18C6 alleviates the tendency of charged side chains to seek intramolecular solvation, potentially preserving native-like structures in the gas phase. These results suggest that microsolvation may be an important tool for facilitating examination of native-like protein structures in gas phase experiments.
Graphical Abstract ?
  相似文献   

5.
Chiral transmission between monosaccharides and amino acids via photodissociation in the gas phase was examined using a tandem mass spectrometer fitted with an electrospray ionization source and a cold ion trap in order to investigate the origin of the homochirality of biomolecules in molecular clouds. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of the monosaccharide enantiomers glucose (Glc) and galactose (Gal) with protonated l-tryptophan H+(l-Trp) were obtained by photoexcitation of the indole ring of l-Trp. l-Trp dissociated via Cα–Cβ bond cleavage when noncovalently complexed with d-Glc; however, no dissociation of l-Trp occurred in the homochiral H+(l-Trp)(l-Glc) noncovalent complex, where the energy absorbed by l-Trp was released through the evaporation of l-Glc. This enantioselective photodissociation of Trp was due to the transmission of chirality from Glc to Trp via photodissociation in the gas-phase noncovalent complexes, and was applied to the quantitative chiral analysis of monosaccharides. The enantiomeric excess of monosaccharides in solution could be determined by measuring the relative abundance of the two product ions in a single photodissociation mass spectrum of the cold gas-phase noncovalent complex with H+(l-Trp), and by referring to the linear relationships derived in this work.
Graphical Abstract ?
  相似文献   

6.
We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.   相似文献   

7.
Electron transfer dissociation (ETD) is commonly employed in ion traps utilizing rf fields that facilitate efficient electron transfer reactions. Here, we explore performing ETD in the HCD collision cell on an Orbitrap Velos instrument by applying a static DC gradient axially to the rods. This gradient enables simultaneous three dimensional, charge sign independent, trapping of cations and anions, initiating electron transfer reactions in the center of the HCD cell where oppositely charged ions clouds overlap. Here, we evaluate this mode of operation for a number of tryptic peptide populations and the top-down sequence analysis of ubiquitin. Our preliminary data show that performing ETD in the HCD cell provides similar fragmentation as ion trap-ETD but requires further optimization to match performance of ion trap-ETD.   相似文献   

8.
The fragmentation of peptides containing quaternary ammonium group, but lacking easily mobilizable protons, was examined with the aid of deuterium-labeled analogs and quantum-chemical modeling. The fragmentation of oligoproline containing quaternary ammonium group involves the mobilization of hydrogens localized at α- and γ- or δ-carbon atoms in the pyrrolidine ring of proline. The study of the dissociation pattern highlights the unusual proline residue behavior during MS/MS experiments of peptides.   相似文献   

9.
Mathematical expressions for the analytical duty cycle associated with different overtones in overtone mobility spectrometry are derived from the widths of the transmitted packets of ions under different instrumental operating conditions. Support for these derivations is provided through ion trajectory simulations. The outcome of the theory and simulations indicates that under all operating conditions there exists a limit or maximum observable overtone that will result in ion transmission. Implications of these findings on experimental design are discussed.   相似文献   

10.
A new MALDI-TOF/TOF system with monoisotopic precursor selection was applied to the analysis of triacylglycerols in an olive oil sample. Monoisotopic precursor selection made it possible to obtain product-ion mass spectra without interference from species that differed by a single double bond. Complete structure determination of all triacylglycerols, including structural isomers, was made possible by interpreting the charge-remote fragmentation resulting from high-energy collision-induced dissociation (CID) of the sodiated triacylglycerols.   相似文献   

11.
MALDI in-source decay (ISD) has been used for top-down sequencing of proteins. The use of the matrix 1,5-diaminonapthalene (1,5-DAN) gave abundant w ions, which are formed from the unimolecular dissociation of z? radical fragments via α cleavage reaction and thus help identify which of the isobaric amino acids, Leu or Ile, is present. The high abundance of w ions in MALDI-ISD with 1,5-DAN results from the low collision rate in the MALDI plume. MALDI-ISD with 1,5-DAN appears to be an useful method for the top-down sequencing of proteins, including discrimination of Leu and Ile near the C-terminal end.   相似文献   

12.
Reaction products from the ozonolysis of unsaturated lipids at gas–liquid interfaces have the potential to significantly influence the chemical and physical properties of organic aerosols in the atmosphere. In this study, the gas-phase dissociation behavior of lipid secondary ozonides is investigated using ion-trap mass spectrometry. Secondary ozonides were formed by reaction between a thin film of unsaturated lipids (fatty acid methyl esters or phospholipids) with ozone before being transferred to the gas phase as [M + Na]+ ions by electrospray ionization. Activation of the ionized ozonides was performed by either energetic collisions with helium buffer-gas or laser photolysis, with both processes yielding similar product distributions. Products arising from the decomposition of the ozonides were characterized by their mass-to-charge ratio and subsequent ion-molecule reactions. Product assignments were rationalized as arising from initial homolysis of the ozonide oxygen–oxygen bond with subsequent decomposition of the nascent biradical intermediate. In addition to classic aldehyde and carbonyl oxide-type fragments, carbon-centered radicals were identified with a number of decomposition pathways that indicated facile unimolecular radical migration. These findings reveal that photoactivation of secondary ozonides formed by the reaction of aerosol-bound lipids with tropospheric ozone may initiate radical-mediated chemistry within the particle resulting in surface modification.
Graphical Abstract ?
  相似文献   

13.
The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low pK a1 and pK a2) and to have high hydrophobicity (logP ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.
Graphical Abstract ?
  相似文献   

14.
The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D-myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3 , although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3 in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations.
Graphical Abstract
  相似文献   

15.
Biomimetic antireflective silicon nanocones array is used for analysis of small molecules by mass spectrometry. The role of the absorbed laser energy and its distribution in the laser desorption/ionization process has been investigated by varying the antireflective features precisely. By optimizing the antireflective silicon array, the absorbed laser energy can be channeled completely into the desorption/ionization of analytes. The optimized silicon array exhibits excellent performance to detect peptide, amino acid, drug molecule, and carbohydrate without any interference in the low-mass region.   相似文献   

16.
Ionization processes have been discovered by which small and large as well as volatile and nonvolatile compounds are converted to gas-phase ions when associated with a matrix and exposed to sub-atmospheric pressure. Here, we discuss experiments further defining these simple and unexpected processes. Charge separation is found to be a common process for small molecule chemicals, solids and liquids, passed through an inlet tube from a higher to a lower pressure region, with and without heat applied. This charge separation process produces positively- and negatively-charged particles with widely different efficiencies depending on the compound and its physical state. Circumstantial evidence is presented suggesting that in the new ionization process, charged particles carry analyte into the gas phase, and desolvation of these particles produce the bare ions similar to electrospray ionization, except that solid particles appear likely to be involved. This mechanistic proposition is in agreement with previous theoretical work related to ion emission from ice.
Graphical Abstract ?
  相似文献   

17.
A three-step method to determine the eutectic composition of a binary or ternary mixture is introduced. The method consists in creating a temperature–composition diagram, validating the predicted eutectic composition via differential scanning calorimetry and subsequent T-History measurements. To test the three-step method, we use two novel eutectic phase change materials based on \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm O}\) and \(\mathrm{NH}_4\mathrm{NO}_3\)   respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\hbox {O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) with equilibrium liquidus temperatures of 12.4 and 3.9  \(\,^{\circ }\mathrm {C}\) respectively with corresponding melting enthalpies of 135 J \(\mathrm{g}^{-1}\) (237 J \(\mathrm{cm}^{-3}\) ) respectively 133 J \(\mathrm{g}^{-1}\) (225 J \(\mathrm{cm}^{-3}\) ). We find eutectic compositions of 75/25 mass% for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) and 73/27 mass% for \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) . Considering a temperature range of 15 K around the phase change, a maximum storage capacity of about 172 J \(\mathrm{g}^{-1}\) (302 J \(\mathrm{cm}^{-3}\) ) respectively 162 J \(\mathrm{g}^{-1}\) (274 J \(\mathrm{cm}^{-3}\) ) was determined for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) .  相似文献   

18.
This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N′H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.   相似文献   

19.
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.
Graphical Abstract
  相似文献   

20.
Proof of concept evidence is presented for a new method for the determination of isoaspartate, an important post-translational modification. Chemical derivatization is performed using common reagents for the modification of carboxylic acids and shown to yield suitable diagnostic information with regard to isomerization at the aspartate residue. The diagnostic gas phase chemistry is probed by collision-induced dissociation mass spectrometry, on the timescale of the MS experiment and semi-quantitative calibration of the percentage of isoaspartate in a peptide sample is demonstrated.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号