首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colloidal inorganic nanocrystals stand out as an important class of advanced nanomaterials owing to the flexibility with which their physical-chemical properties can be controlled through size, shape, and compositional engineering in the synthesis stage and the versatility with which they can be implemented into technological applications in fields as diverse as optoelectronics, energy conversion/production, catalysis, and biomedicine. The use of microwave irradiation as a non-classical energy source has become increasingly popular in the preparation of nanocrystals (which generally involves complex and time-consuming processing of molecular precursors in the presence of solvents, ligands and/or surfactants at elevated temperatures). Similar to its now widespread use in organic chemistry, the efficiency of "microwave flash heating" in dramatically reducing overall processing times is one of the main advantages associated with this technique. This Review illustrates microwave-assisted methods that have been developed to synthesize colloidal inorganic nanocrystals and critically evaluates the specific roles that microwave irradiation may play in the formation of these nanomaterials.  相似文献   

2.
We review the optical and electrical properties of solids that are composed of semiconductor nanocrystals. Crystals, with dimensions in the nanometre range, of II-VI, IV-VI and III-V compound semiconductors, can be prepared by wet-chemical methods with a remarkable control of their size and shape, and surface chemistry. In the uncharged ground state, such nanocrystals are insulators. Electrons can be added, one by one, to the conduction orbitals, forming artificial atoms strongly confined in the nanocrystal. Semiconductor nanocrystals form the building blocks for larger architectures, which self-assemble due to van der Waals interactions. The electronic structure of the quantum dot solids prepared in such a way is determined by the orbital set of the nanocrystal building blocks and the electronic coupling between them. The opto-electronic properties are dramatically altered by electron injection into the orbitals. We discuss the optical and electrical properties of quantum dot solids in which the electron occupation of the orbitals is controlled by the electrochemical potential.  相似文献   

3.
By combining nonhydrolytic reaction with seed-mediated growth, high-quality and monodisperse spinel cobalt ferrite, CoFe(2)O(4), nanocrystals can be synthesized with a highly controllable shape of nearly spherical or almost perfectly cubic. The shape of the nanocrystals can also be reversibly interchanged between spherical and cubic morphology through controlling nanocrystal growth rate. Furthermore, the magnetic studies show that the blocking temperature, saturation, and remanent magnetization of nanocrystals are solely determined by the size regardless the spherical or cubic shape. However, the shape of the nanocrystals is a dominating factor for the coercivity of nanocrystals due to the effect of surface anisotropy. Such magnetic nanocrystals with distinct shapes possess tremendous potentials in fundamental understanding of magnetism and in technological applications of magnetic nanocrystals for high-density information storage.  相似文献   

4.
Applications in the fields of materials science and nanotechnology increasingly demand monodisperse nanoparticles in size and shape. Up to now, no general purification procedure exists to thoroughly narrow the size and shape distributions of nanoparticles. Here, we show by analytical ultracentrifugation (AUC) as an absolute and quantitative high-resolution method that multiple recrystallizations of nanocrystals to mesocrystals is a very efficient tool to generate nanocrystals with an excellent and so-far unsurpassed size-distribution (PDIc=1.0001) and shape. Similar to the crystallization of molecular building blocks, nonclassical recrystallization removes “colloidal” impurities (i.e., nanoparticles, which are different in shape and size from the majority) by assembling them into a mesocrystal. In the case of nanocrystals, this assembly can be size- and shape-selective, since mesocrystals show both long-range packing ordering and preferable crystallographic orientation of nanocrystals. Besides the generation of highly monodisperse nanoparticles, these findings provide highly relevant insights into the crystallization of mesocrystals.  相似文献   

5.
Phosphine‐initiated cation exchange is a well‐known inorganic chemistry reaction. In this work, different phosphines have been used to modulate the thermodynamic and kinetic parameters of the cation exchange reaction to synthesize complex semiconductor nanostructures. Besides preserving the original shape and size, phosphine‐initiated cation exchange reactions show potential to precisely tune the crystallinity and composition of metal/semiconductor core–shell and doped nanocrystals. Furthermore, systematic studies on different phosphines and on the elementary reaction mechanisms have been performed.  相似文献   

6.
The activity, selectivity, and long-term stability of catalyst nanoparticles can be enhanced by shape modulation. Such shaped catalytic nanocrystals have well-defined surface crystalline structures on which the cleavage and recombination of chemical bonds can be rationally controlled. Metal and metal oxide nanocrystals have been synthesized in various shapes using wet chemistry techniques such as reducing metal precursors in the presence of the surface-capping agents. The surface-capping agents should be removed prior to the catalytic chemical reaction, which necessitates clean catalytically active surface. The removal process should be performed very carefully because this removal often causes shape deformation. A few examples in which the surface-capping agents contribute positively to the chemical reactions have been reported. The examples described in this review include shaped metal, metal composite, and metal oxide nanocrystals that show enhanced catalytic activity, selectivity, and long-term stability for various gas-phase, liquid-phase, or electrocatalytic reactions. Although most of the studies using these shaped nanocrystals for catalytic applications have focused on low-index surfaces, nanocrystals with high-index facets and their catalytic applications have recently been reported. By bridging surface studies with nanoparticle catalysts using shape modulation, catalysts with improved properties can be rationally designed.  相似文献   

7.
We report the shape and size control of polyhedral gold nanocrystals by a modified polyol process. The rapid reduction of gold precursors in refluxing 1,5-pentanediol has successfully provided a series of gold nanocrystals in the shape of octahedra, truncated octahedra, cuboctahedra, cubes, and higher polygons by incremental changes of silver nitrate concentration. All nanocrystals were obtained quantitatively and were uniform in shape and size in the range of approximately 100 nm. Smaller octahedra and cubes were also prepared by using large amounts of PVP. Silver species generated from AgNO3 seemed to determine the final nanocrystal morphology by the selective growth of {111} and/or the restriction of {100}. The shape evolution of the particles was addressed by quenching the reactions at different time intervals. The approximately 60 nm seeds were generated rapidly and grown slowly with simultaneous edge sharpening. Aging the reaction mixture focused the size and shape of the nanocrystals by Ostwald ripening. We believe that our selective growth conditions can be applied to other shapes and compositions of face-centered cubic metals.  相似文献   

8.
Phosphine‐initiated cation exchange is a well‐known inorganic chemistry reaction. In this work, different phosphines have been used to modulate the thermodynamic and kinetic parameters of the cation exchange reaction to synthesize complex semiconductor nanostructures. Besides preserving the original shape and size, phosphine‐initiated cation exchange reactions show potential to precisely tune the crystallinity and composition of metal/semiconductor core–shell and doped nanocrystals. Furthermore, systematic studies on different phosphines and on the elementary reaction mechanisms have been performed.  相似文献   

9.
The nucleation and growth of colloidal CdSe nanocrystals with a variety of elongated shapes were explored in detail. The critical size nuclei for the system were magic sized nanoclusters, which possessed a sharp and dominated absorption peak at 349 nm. The formation of the unique magic sized nuclei in a broad monomer concentration range was not expected by the classic nucleation theory. We propose that this was a result of the extremely high chemical potential environment, that is, very high monomer concentrations in the solution, required for the growth of those elongated nanocrystals. The shape, size, and size/shape distributions of the resulting nanocrystals were all determined by two related factors, the magic sized nuclei and the concentration of the remaining monomers after the initial nucleation stage. Without any size sorting, nearly monodisperse CdSe quantum structures with different shapes were reproducibly synthesized by using the alternative cadmium precursors, cadmium-phosphonic acid complexes. A reasonably large excess of the cadmium precursor, which is less reactive than the Se precursor, was found beneficial for the system to reach the desired balance between nucleation and growth. The shape evolution and growth kinetics of these elongated nanocrystals were consistent with the diffusion-controlled model proposed previously. The branched nanocrystals had to grow at very high monomer concentrations because the multiple growth centers at the end of each branch must be fed with a very high diffusion flux to keep all branches in the 1D-growth mode. The rice-shaped nanocrystals were found as special products of the 3D-growth stage. The growth of the nanocrystals in the 1D-growth stage was proven to be not unidirectional after the length of the nanocrystals reached a certain threshold. Experimental results indicate that coordinating solvents and two ligands with distinguishable coordinating abilities are both not intrinsic requirements for the growth of elongated CdSe nanocrystals.  相似文献   

10.
In order to maximize the performance of nanocrystals in a specific application, it is necessary to control both their size and shape. Here we report a one-pot protocol that allows us to separate growth from nucleation for achieving better control over the size and shape of Pd nanocrystals. The two processes are temporally separated from each other, although the synthesis is carried out in the same reaction container. Size control is achieved by simply varying the ratio between the amounts of precursor allocated to the growth and nucleation processes. With the involvement of seeds at a fixed number, increasing the amount of precursor for growth leads to increasingly larger nanocrystals. Shape control is made possible by varying the capping agent, with bromide leading to a cubic shape and citrate inducing the formation of an octahedral shape. The synthesis can also be scaled up by at least tenfold without compromising the quality.  相似文献   

11.
Seven-nanometer cobalt nanocrystals are synthesized by colloidal chemistry. Gentle annealing induces a direct structural transition from a low crystalline state to the hexagonal close packed (hcp) phase without changing the size, size distribution, and the lauric acid passivating layer. The hcp structured nanocrystals can be easily redispersed in solvent for further application and processing. We found that the magnetization at saturation and the magnetic anisotropy are strongly modified through the annealing process. Monolayer self-assembly of the hcp cobalt nanocrystals is obtained, and due to the dipolar interaction, ferromagnetic behavior close to room temperature has been observed. This work demonstrates a novel approach for obtaining small size hcp structured cobalt magnetic nanocrystals for many technological applications.  相似文献   

12.
In recent years, intermetallic nanocrystals (IMNCs) have attracted extensive attention in the field of electrocatalysis. However, precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs seems to be a challenge to the traditional method of high-temperature annealing although these parameters have a significant effect on the electrocatalytic performance. Controllable synthesis of IMNCs by the wet chemistry method in the liquid phase shows great potential compared with the traditional high-temperature annealing method. In this Review, we attempt to summarize the preparation of IMNCs by the seed-mediated synthesis in the liquid phase, as well as their applications in electrocatalytic reduction reactions. Several representative examples are purposely selected for highlighting the huge potential of the seed-mediated synthesis approach in chemical synthesis. Specifically, we personally perceive the seed-mediated synthesis approach as a promising tool in the future for precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs.  相似文献   

13.
Alpha-Fe(2)O(3) nanocrystals with controlled diameters ranging from 10 to 63 nm were successfully prepared. The finite size effects in alpha-Fe(2)O(3) nanocrystals were probed by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, UV-visible spectrum, and magnetization measurements. With a size reduction, alpha-Fe(2)O(3) nanocrystals showed a lattice expansion and an enlarged axial ratio of c/a that is in apparent contradiction to the previous conjecture of high lattice symmetry for alpha-Fe(2)O(3) nanocrystals at small sizes. The surface terminations of alpha-Fe(2)O(3) nanocrystals were found to be highly hydrated with a size dependence that surprisingly follows the surface hydration chemistry of anatase TiO2 nanocrystals reported recently by us. The lattice vibrations, electronic transitions, and magnetic properties of alpha-Fe(2)O(3) nanocrystals were significantly modified by surface hydration and lattice expansion. The finite size effects that occurred in alpha-Fe(2)O(3) nanocrystals at small sizes were first found to give a red shift in frequencies of perpendicular mode at 540 cm(-1), a blue shift in the electronic transition of double exciton process in visible region, and a significant decrease in the coercive force.  相似文献   

14.
Topochemical [2 + 2] cycloaddition polymerization of methyl p-phenylenediacrylate and 2,5-distyrylpyridine in nanocrystals, prepared by the reprecipitation method, were investigated in comparison with those in bulk crystals. The bulk single crystals, larger than 1 mum in size, broke into microcrystals with variety of size and shape in the course of polymerization. Interestingly, however, these nanocrystals show single-crystal-to-single-crystal transformation.  相似文献   

15.
Assemblies of carbon monoxide dehydrogenase molecules with CdS nanocrystals show fast CO(2) reduction driven by visible light. Activity is strongly influenced by size and shape of nanocrystals, and by the nature of the electron donor.  相似文献   

16.
Tuning the functional properties of nanocrystals is an important issue in nanoscience. Here, we are able to tune the photocatalytic properties of SnO2 nanocrystals by controlling their size and shape. A structural analysis was carried out by using X‐ray diffraction (XRD)/Rietveld and transmission electron microscopy (TEM). The results reveal that the number of oxygen‐related defects varies upon changing the size and shape of the nanocrystals, which eventually influences their photocatalytic properties. Time‐resolved spectroscopic studies of the carrier relaxation dynamics of the SnO2 nanocrystals further confirm that the electron–hole recombination process is controlled by oxygen/defect states, which can be tuned by changing the shape and size of the materials. The degradation of dyes (90 %) in the presence of SnO2 nanoparticles under UV light is comparable to that (88 %) in the presence of standard TiO2 Degussa P‐25 (P25) powders. The photocatalytic activity of the nanoparticles is significantly higher than those of nanorods and nanospheres because the effective charge separation in the SnO2 nanoparticles is controlled by defect states leading to enhanced photocatalytic properties. The size‐ and shape‐dependent photocatalytic properties of SnO2 nanocrystals make these materials interesting candidates for photocatalytic applications.  相似文献   

17.
Synthesis and Characterization of CdSe Nanocrystals Capped by CdS   总被引:1,自引:0,他引:1  
CdSe semiconductor nanocrystals capped by CdS were synthesized in the aqueous solution with 2-mercaptoethanol as the stabilizer. The CdS capping with a higher band-gap than that of the core crystallite has successfully eliminated the surface traps. Optical absorption and fluorescence emission spectra were used to probe the effect of CdS passivation on the electronic structure of the nanocrystals. The composite CdSe/CdS nanocrystals exhibit strong, narrow(FWHM≤40 nm) and stable band-edge photoluminescence. X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy were used to analyze the composite nanocrystals and determine their average size, size distribution, shape, internal structure and elemental composition.  相似文献   

18.
Since inorganic nanocrystals exhibit unique shape-dependent nanoscale properties and can be utilized as basic building blocks for futuristic nanodevices, a systematic study on the shape control of these nanocrystals remains an important subject in materials and physical chemistry. In this feature article, we overview the recent progress on the synthetic development of symmetry-controlled colloidal nanocrystals of semiconductor and metal oxide, which are prepared through nonhydrolytic chemical routes. We describe their shape-guiding processes and illustrate the detailed key factors controlling their growth by examining various case studies of zero-dimensional spheres and cubes, one-dimensional rods, and quasi multidimensional structures such as disks, multipods, and stars. Specifically, the crystalline phase of nucleating seeds, surface energy, kinetic vs thermodynamic growth, and selective adhesion processes of capping ligands are found to be most crucial for the determination of the nanocrystal shape.  相似文献   

19.
Effects of side reactions during the formation of high quality colloidal nanocrystals were studied using ZnO as a model system. In this case, an irreversible side reaction, formation of esters, was identified to accompany formation of ZnO nanocrystals through the chemical reaction between zinc stearate and an excess amount of alcohols in hydrocarbon solvents at elevated temperatures. This irreversible side reaction made the resulting nanocrystals stable and with nearly unity yield regardless of their size, shape, and size/shape distribution. Ostwald ripening and intraparticle ripening were stopped due to the extremely low solubility/stability of the possible monomers because all free ligands in the solution were consumed by the side reaction. However, focusing on size distribution and 1D growth that are needed for the growth of high quality nanocrystals could still occur for high yield reactions. Upon the addition of a small amount of stearic acid or phosphonic acid, immediate partial dissolution of ZnO nanocrystals took place. Although the excess alcohol could not react with the resulting zinc phosphonic acid salt, it could force the newly formed zinc stearate gradually but completely back onto the existing nanocrystals. The results in this report indicate that side reactions are extremely important for the formation of high quality nanocrystals by affecting their quality, yield, and stability under growth conditions. Due to their lack of information in the literature and obvious practical advantages, studies of side reactions accompanying formation of nanocrystals are important for both fundamental science related to crystallization and industrial production of high quality nanocrystals.  相似文献   

20.
无机纳米晶的形貌调控及生长机理研究   总被引:6,自引:0,他引:6  
形貌及尺寸规整可控的纳米晶体的合成是目前十分引人注目的纳米材料研究领域.制备合成中的形貌调控及其功能化是这些纳米材料能够得到应用的关键问题.研究者们希望在纳米晶的任一阶段均能实现控制并在期望的阶段停止,从而得到尺寸、形态、结构及组成确定的纳米晶体.本文综述了近年来无机纳米晶体的典型合成路径,深入探讨了纳米晶在成核、生长及熟化阶段的控制原理,研究了液相合成纳米材料过程中晶体结构与生长行为的相关性问题,并总结了几类具有代表性的低维、多维纳米晶体的形成规律和生长机理.探索纳米粒子的调控合成对于纳米材料的规模化生产及应用具有重要的理论价值和指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号