首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The UV-Vis spectra of probe phenol blue in CO(2)+ethanol and CO(2)+n-pentane binary mixtures were studied at 308.15 K and different pressures. The experiments were conducted in both supercritical region and subcritical region of the mixtures by changing the compositions of the mixed solvents. On the basis of the experimental results the local compositions of the solvents about phenol blue were estimated by neglecting the size difference of CO(2) and the cosolvents. Then the local composition data were corrected by a method proposed in this work, which is mainly based on Lennard-Jones sphere model. It was demonstrated that the local mole fraction of the cosolvents is higher than that in the bulk solution at all the experimental conditions. In the near critical region of the mixed solvents the local composition enhancement, defined as the ratio of cosolvent mole fraction about the solute to that in the bulk solution, increased significantly as pressure approached the phase boundary from high pressure. The local composition enhancement was not considerable as pressure was much higher than the critical pressure. In addition, in subcritical region the degree of composition enhancement was much smaller and was not sensitive to pressure in the entire pressure range as the concentration of the cosolvents in the mixed solvents was much higher than the concentration at the critical point of the mixtures.  相似文献   

2.
Supercriticalfluids(SCFs)havemanyfeatures.Forexample,density,dielectricconstantandsolubilityparametercanbealteredbetweengas-likeandliquid-likethroughmodestmanipulationsofpressureand/ortemperature.Inrecentyears,differenttechniqueshavebeenusedtostudythemolecularinteractionsinSCFs,suchasUV',FTIR',fluorencence',andpartialmolarvolumemeasurement4.Itisknownthatsolvent(SCF)-soluteclustersexistinSCFmixturesinhighcompressibleregion#.Molecularsimulationssshowedthatself-associationofthemoleculesex…  相似文献   

3.
Pulsed, supersonic beams of pure carbon monoxide and carbon dioxide at stagnation conditions above their critical point have been investigated by time-of-flight measurements as a function of pressure and temperature. Although both molecules form clusters readily in adiabatic expansions, surprisingly large speed ratios (above 100) indicative of very low translational temperatures (below 0.1 K) have been achieved. In particular, the supersonic expansion of CO(2) at stagnation temperatures slightly above the phase transition to the supercritical state results in unprecedented cold beams. This efficient cooling is attributed to the large values of the heat capacity ratio of supercritical fluids in close vicinity of their critical point.  相似文献   

4.
An understanding of homogeneous catalysis in supercritical fluids requires a knowledge of the phase behavior and the variation in critical point as the reaction proceeds. In this paper, the critical temperatures, T(c) and pressures, P(c), have been measured for a considerable number of mixtures representing the various stages of the hydroformylation reaction of propene in supercritical CO(2) and different reactant concentrations. Critical point data have also been measured for all of the binary mixtures of the components (CO(2), H(2), CO, propene, n- and isobutyraldehyde) which are not available from the literature or can be deduced from published data. We use the stoichiometry of the reacting system to simplify greatly the phase behavior problem by defining a path through the otherwise multidimensional "phase space". Satisfactory modeling of the data (0.3% in T(c) and 3.0% in P(c)) has been achieved using the Peng-Robinson equation of state and ignoring all binary interactions which do not involve CO(2). The model is used to explore the strategies needed to avoid phase separation in continuous and batch reactions. At a given temperature, a batch reactor may need to be run under much higher pressures than a flow reactor if single-phase conditions are to be preserved throughout the course of the reaction. Most of the critical point data were measured acoustically, but a selection of points were validated using more traditional view-cell procedures.  相似文献   

5.
The reaction rate of the Diels-Alder reaction between N-ethylmaleimide and 9-hydroxymethylanthrance in CO2 + ethanol and CO2 + hexane mixed solvents of different compositions were determined by in situ UV/vis spectroscopy at 318.15 K and different pressures. The density of the mixed solvents at different pressures was also determined and the isothermal compressibility was calculated using the density data. The activation volume of the reaction was calculated based on the dependence of rate constant (kc) on pressure. It was demonstrated that the kc was very sensitive to the pressure in the mixed solvents near the critical region and the kc increased dramatically as pressure approached dew points, critical point, and bubble points of the mixed solvents. However, the kc in the mixed solvents outside the critical region or in pure CO2 was not sensitive to pressure. At suitable conditions, kc could be 40 times larger than that in acetonitrile. The activation volume of the reaction was nearly independent of pressure as the pressure was much higher than the phase separation pressure of the mixed solvents, while it increased considerably as pressure approached the bubble points, critical point, and dew points from high pressure. The clustering of the solvent molecules with the reactants and the activated complex in the reaction systems near the phase boundary in the critical region may be the main reason for the interesting phenomena observed. This work also shows that, using pure CO2 as the solvent, the reaction cannot be carried out in the critical region of the solvent due to the limitations of the reactants, while it can be conducted in the critical region of mixed solvents of suitable compositions, where the solvents are highly compressible and the reaction rate can be tuned effectively by pressure.  相似文献   

6.
The solvent strength and selectivity of supercritical fluids (SCF) can be greatly enhanced by addition of one or two entrainers into the system. The amount of entrainer added is usually less than 5% (mole fraction). However, even with such slight amount, solubility of organic solutes has been observed to increase by several orders magnitude[1]. Therefore, critical pressure and tem-perature data of these supercritical fluid + cosolvent systems are imperative for the reasonable design of effici…  相似文献   

7.
The phase behavior, density, and constant-volume molar heat capacity (Cv,m) of ethane + n-pentane binary mixtures have been measured in the supercritical region and subcritical region at T=309.45 K. In addition, the isothermal compressibility (κT) has been calculated using the density data determined. For a mixed fluid with a composition close to the critical composition, Cv,m and κT increase sharply as the pressure approaches the critical point (CP), the dew point (DP), or the bubble point (BP). However, Cv,m is not sensitive to pressure in the entire pressure range if the composition of the mixed fluid is far from the critical composition. To tune the properties of the binary mixtures effectively by pressure, both the composition and the pressure should be close to the critical point of the mixture. The intermolecular interactions in the mixture are also discussed on the basis of the experimental results.  相似文献   

8.
The enthalpy of solution (Delta(solv)H(m)) and solubility of 1,4-naphthoquinone in CO(2) + n-pentane were measured at 308.15 K in the critical region of the binary fluid. In order to study the effect of phase behavior of the mixed solvent on Delta(solv)H(m), the experiments were carried out in the supercritical (SC) and subcritical region of the binary solvent. The density of the mixed solvent in different conditions was determined. The isothermal compressibility (K(T)) of the mixed solvent, and the partial molar volume (V(n-pentane)) of n-pentane in the solution were calculated. It was demonstrated that the Delta(solv)H(m) was negative in all conditions. Delta(solv)H(m) is nearly independent of pressure or density in all the solvents in a high-density region, in which compressibility of the solvent is very small; this indicates that the intermolecular interaction between the solvent and the solute is similar to that for liquid solutions. It is very interesting that Delta(solv)H(m) in the mixed SC fluid differs from the Delta(solv)H(m) in mixed subcritical fluids. The absolute value of Delta(solv)H(m) in the mixed SC fluid is close to that in pure SC CO(2) in the high-density region, and is much lower than that in pure SC CO(2) in the low-density region. In the mixed subcritical fluids, the Delta(solv)H(m) is also close to that in the pure CO(2) in the high-density region. However, at the same density, the absolute value of Delta(solv)H(m) in the binary subcritical fluid is larger than that in pure CO(2) in the high-compressible region of the mixed solvent. The main reason for this is that the degree of clustering in the SC solutions is small at the density in which the degree of clustering is large in the subcritical solutions. It can be concluded that solubility enhancement by n-pentane in the mixed SC fluid is entropy driven. In contrast, the solubility enhancement by n-pentane in subcritical fluids is enthalpy driven. The intermolecular interaction in the SC solutions and subcritical solutions can be significantly different even if their densities are the same.  相似文献   

9.
The study of inhomogeneity in supercritical fluids (SCFs) is of great importance. In this work, we propose the concept of local activity coefficients in supercritical (SC) solutions, which link thermodynamics and inhomogeneity in SC systems. The local activity coefficients of CO(2)+acetonitrile+phenol blue and CO(2)+acetic acid+phenol blue systems are investigated at 308.15 K in critical region and outside critical region. To do this, the local compositions of CO(2)+acetonitrile and CO(2)+acetic acid mixed solvents around phenol blue are first estimated using UV-visible spectroscopy. Then it is considered that there exist bulk phase and local phase around phenol blue in the systems. The activity coefficients of CO(2) and the cosolvents (acetonitrile or acetic acid) in bulk phase are calculated using Peng-Robinson equation of state. The local activity coefficients of CO(2) and the cosolvents are then calculated on the basis of thermodynamic principles. It is demonstrated that in the critical region the local activity coefficients differ from bulk activity coefficients significantly and are sensitive to pressure. This can explain many unusual phenomena in SC systems in critical region thermodynamically.  相似文献   

10.
The phase behavior of supercritical (SC) CO2 PEG 1000 (PEG with average molecular weight of 1000 g/mol) n-butanol system was studied. It was demonstrated that SC CO2 could induce phase separation of PEG 1000 n-butanol system under suitable conditions. This hints that SC CO2 has potential applications in the separation of mixtures of PEG organic compound.  相似文献   

11.
在5~11MPa的范围内,利用恒容静态平衡法详细考察了CO2密度在0.542~0.590g/cm3范围的不同组成的超临界CO2+EtOH+CO+H2四元体系的压力和温度的变化规律,并测定了相应的临界温度和临界压力.模拟了超临界丙烯氢甲酰反应体系的相行为.结果发现,CO+H2加入量的增多可明显改变超临界CO2+EtOH+CO+H2四元体系的超临界性质,主要表现为该体系的临界温度随着CO和H2摩尔分数的增加而线性降低,临界压力随着CO和H2摩尔分数的增加而线性增加.在相同的CO和H2组成下,超临界四元体系的压力随着体系温度的增加而线性增加,并且p-T线的斜率基本相同.在相同温度下超临界四元体系的压力随着体系中CO和H2摩尔分数的增加线性增加,并且不同温度时的变化率基本相同.  相似文献   

12.
Titania-silica mesoporous composites have been prepared using polyethylene glycol (PEG) 20,000 as a template direction reagent with the assistance of supercritical carbon dioxide (SC CO(2)). For this preparation method, the composite precursors of tetrabutyl titanate (TBTT) and tetraethyl orthosilicate (TEOS) were dissolved in supercritical CO(2) and impregnated into PEG 20,000 using SC CO(2) as swelling agent and carrier. After removal of the PEG template by calcination in air at suitable temperatures, porous titania-silica composites were obtained. Effects of CO(2) pressure and temperature have been studied on the impregnation ratio during the supercritical fluid condition. The composite products were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), FTIR spectroscopy, nitrogen sorption-desorption experiments, scanning electronic microscope (SEM), and transmission electron microscope (TEM). XRD and nitrogen sorption-desorption experimental results indicate that the titania-silica composite crystallized in anatase phase and has a preferable BET surface area up to 301.98 m(2)/g. It was also demonstrated that the microstructure and macroproperty of TiO(2)/SiO(2) composites depend strongly on the experimental pressure during the impregnation process in SC CO(2). At suitable CO(2) pressure, silica even can be found in a single crystalline structure in nature by observation of TEM. At the same time, SEM indicates that the composite product existed in a spheric form or a cubic form inserted with many holes. So this work provides a new route to control and obtain the special micrography of TiO(2)/SiO(2) composites with the aid of suitable polymer templates in supercritical CO(2).  相似文献   

13.
The Brillouin scattering spectroscopy studies have been conducted in a diamond anvil cell for a liquid mixtures composed of 95 mol?% H(2)O and 5 mol?% CO(2) under high temperatures and pressures. The sound velocity, refractive index, density, and adiabatic bulk modulus of the H(2)O+CO(2) mixtures were determined under pressures up to the freezing point at 293, 453, and 575 K. It is found from the experiment that sound velocities of the liquid mixture are substantially lower than those of pure water at 575 K, but not at lower temperatures. We presented an empirical relation of the density in terms of pressure and temperature. Our results show that liquid H(2)O+CO(2) mixtures are more compressible than water obtained from an existing equation of state of at 453 and 575 K.  相似文献   

14.
Tautomerism equilibrium of ethyl acetoacetate (EAA) in compressed CO2 + methanol and CO2 + ethanol mixtures was studied by UV-Vis spectroscopy at 308.15 K and different pressures. The volume expansion coefficient (alpha) of the solvents at different pressures was also determined. The relative permittivity (epsilon) of CO2 + methanol and CO2 + ethanol mixtures at different conditions was calculated using the Kc and Onsager solvent parameter. The equilibrium constant (Kc) of EAA in the binary mixtures increases considerably with increasing pressure or volume expansion coefficient. The relative permittivity or the polarity of the binary mixtures decreases sharply with increasing volume expansion coefficient in the range of 0 < alpha < 1.5. However, as the volume expansion coefficient exceeds 1.5, the relative permittivity decreases slowly. In other words, the dissolution of CO2 in the polar solvents can reduce the polarity of the solvents significantly in the low volume expansion coefficient range, and the polarity of the solution is not sensitive to the volume expansion coefficient as its value is large enough. The difference in polarity of the two solvents reduces with increasing pressure and becomes negligible after volume expansion coefficient exceeds about 2.5.  相似文献   

15.
The effects of pressure and of the composition of the CO2/ethanol mixed solvent in the critical region on the kinetics of the decomposition of 2,2'-azobis(isobutyronitrile) (AIBN) were studied at 333.15 K. The rate constants (kd) in the mixed solvent far from the critical point and in liquid n-hexane and ethanol were also determined for comparison. It was found that kd is very sensitive to pressure in the mixed solvent near the critical point. However, in the mixed solvent outside the critical region kd is nearly independent of pressure. Interestingly, kd in the mixed solvent in the critical region can be higher than that in ethanol at the same temperature, suggesting that no significant enhancement in the reaction rate by a small pressure change in the critical region of the mixed solvent can be achieved by changing the composition of the liquid solvent in the traditional way. Transition-state theory can predict kd in the mixed solvent far from the critical point and in the liquid solvents well. However, it cannot predict kd in the mixed solvent in the critical region. The special intermolecular interaction between the solvent and the reaction species may contribute to this interesting phenomenon. This work also shows that if pure CO2 or ethanol are used as solvents, the reaction cannot be carried out in the critical region of the solvents at the desired temperature, while it can be conducted in the critical region of the mixed solvent of suitable composition, where the solvent is highly compressible.  相似文献   

16.
可调变流体与绿色化工过程   总被引:13,自引:1,他引:13  
介绍了可调变流体特性及其在绿色化工过程中的应用。重点介绍了利用超临界流体(主要是超临界C02)、亚临界水和气体(主要是CO2)膨胀的流体这三类可调变流体进行绿色化工过程设计的特点与途径。  相似文献   

17.
A study of the kinetics and mechanism of chemical reactions in supercritical fluids is considered. An experimental procedure was proposed for examining reversible chemical reactions in supercritical water. The reaction kinetics of 2-propanol dehydration in supercritical water was studied. It was found that the uncatalyzed reactions of olefin hydrogenation by hydrogen dissolved in supercritical water occur at high rates near the critical point of water. The experimental data on the dehydration of 2-propanol in supercritical water are adequately described by first-order reaction rate equations. The rate constants and activation energies of 2-propanol dehydration near the critical point of supercritical water were found.  相似文献   

18.
Unusual sorption has been reported in thin polymer films exposed to near-critical CO2. When the supercritical fluid approaches the critical point, the film appears to thicken, but it is not clear whether the film swells or there is an adsorption layer on the film surface. A combination of the gradient theory of inhomogeneous systems and the Sanchez-Lacombe equation of state has been used to investigate this phenomenon. It is shown analytically that surface adsorption on an attractive surface is proportional to the compressibility of the fluid. We have also investigated numerically the sorption of supercritical CO2 on poly(dimethylsiloxane) and polyisobutylene, and supercritical 1,1-difluoroethane on polystyrene. By calculating the Gibbs adsorption and adsorption layer thickness of the supercritical fluids, we found in all cases (different substrates, different supercritical fluids) that maximum adsorption occurs when the supercritical fluid is near its compressibility maximum.  相似文献   

19.
Oxidation of n-butanol and 2-pentanol using molecular oxygen in supercritical (SC) CO2 with and without co-solvent is investigated. The results showed that the reaction selectivity is high when the reaction is carried out in SC CO2. It has been observed that co-solvent affects conversion and selectivity of the reaction considerably.  相似文献   

20.
A new force field for dimethyl ether (DME) based on the Lennard-Jones (LJ) 12-6 plus point charge functional form is presented in this work. This force field reproduces experimental saturated liquid and vapor densities, vapor pressures, heats of vaporization, and critical properties to within the statistical uncertainty of the combined experimental and simulation measurements for temperatures between the normal boiling and critical point. Critical parameters and normal boiling point are predicted to within 0.1% of experiment. This force field is used in grand canonical histogram reweighting Monte Carlo simulations to predict the pressure composition diagrams for the binary mixtures DME + SO(2) at 363.15 K and DME + CO(2) at 335.15 and 308.15 K. For the DME + SO(2) mixture, simulation is able to qualitatively reproduce the minimum pressure azeotropy observed experimentally for this mixture, but quantitative errors exist, suggesting that multibody effects may be important in this system. For the DME + CO(2) mixture, simulation is able to predict the pressure-composition behavior within 1% of experimental data. Simulations in the isobaric-isothermal ensemble are used to determine the microstructure of DME + SO(2) and DME + CO(2) mixtures. The DME + SO(2) shows weak pairing between DME and SO(2) molecules, while no specific pairing or aggregation is observed for mixtures of DME + CO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号