首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
This paper describes the characterization and optimization of an amperometric cytochrome c (cyt c)-based sensor for the determination of the antioxidant capacity of pure substances and natural samples. The cyt c and the xanthine oxidase (XOD) enzyme were co-immobilized on the electrode using the combination of several long-chain thiols. The self-assembled monolayer (SAM) was optimized in terms of composition and ratio between thiols. The immobilization protocol for both cyt c and XOD and the SAM formation time were evaluated through electrochemical methods, such as cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CA) and impedance spectroscopy (IS). Finally, the biosensor was applied to the determination of the antioxidant capacity of pure alliin and two compounds extracted from garlic bulbs.  相似文献   

2.
Horse heart cytochrome c (cyt c) was adsorbed on the binary self-assembled monolayers (SAMs) composed of thioctic acid (T-COOH) and thioctic amide (T-NH2) at gold electrodes via electrostatic interaction. The cyt c adsorbed on the modified gold electrode exhibited well-defined reversible electrochemical behavior in 10 mM phosphate buffer solution (PBS, pH 7.0). The surface concentration (Γ) of electroactive species, cyt c, on the binary SAMs was higher than that in single-component SAMs of T-COOH, and reached a maximum value of 9.2 × 10−12 mol cm−2 when the ratio of T-COOH to T-NH2 in adsorption solution was of 3:2, and the formal potential (E0=(Epa+Epc)/2) of cyt c was −0.032 V (vs. Ag|AgCl (3 M NaCl)) in a 10 mM PBS. The interaction between cyt c and the binary SAMs made the E0 shift negatively when compared with that of cyt c in solution (+0.258 V vs. NHE, i.e., +0.058 V vs. Ag|AgCl (3 M NaCl)). The fractional coverage of bound cyt c was a 0.64 theoretical monolayer. The standard electron transfer rate constant of cyt c immobilized on the binary SAMs was also higher than that on single-component SAMs of T-COOH, and the maximum value of 15.8 ± 0.6 s−1 was obtained when the ratio of T-COOH to T-NH2 in adsorption solution was at 3:2. The results suggest that the electrode modified with the binary SAMs functions better than the electrode modified with single-component SAMs of T-COOH.  相似文献   

3.
The assembly of redox proteins on electrodes is an important step in biosensor development. Recently, p‐sulfonato‐calix[4]arene was shown to act as “molecular glue” for the assembly and crystallization of cytochrome c (cyt c). Electrochemical data are presented for microscale cyt c–calixarene crystals grown on self‐assembled monolayers (SAM)‐modified Au electrodes. The crystals were characterized by cyclic voltammetry and exceptionally high concentrations of electroactive cyt c were obtained. The peak currents were found to increase linearly with the square root of the scan rate, thus allowing an evaluation of the rate constant for electron self‐exchange. This study revealed high electroactivity accompanied by fast interprotein electron transfer in crystals, which may have implications for the construction of novel bioelectronic devices.  相似文献   

4.
Electrochemical DNA biosensors are promising tools for the fast, inexpensive and simple in vitro analysis for the determination of free radicals and antioxidants. High concentrations of antioxidants in such compounds as phenolic acids and plant extracts, act as free radical terminators which reduce the effect of the oxidative dam-age on DNA. The electrochemical behavior of three representative phenolic acids, caffeic acid, gallic acid and trolox were studied by cyclic voltammetry. Moreover, the determination of the above antioxidants under the optimized conditions (scan rate, deposition potential and time) using differential pulse voltammetry was also investigated. In vitro studies focused on their antioxidative effect were performed by adsorptive transfer stripping voltammetry and dsDNA biosensor. Using Fenton’s system, with FeSO4 and H2O2 was chosen as a strong oxidative system. This biosensor was applied as a screening antioxidant test in order to estimate the antioxidant capacity of aqueous herb extracts.   相似文献   

5.
A simple method for constructing gold nanoparticle‐modified electrodes with three‐dimensional nanostructures is demonstrated. The electrodes were prepared by casting citrate‐reduced AuNPs onto polycrystalline gold electrodes. The resultant electrodes had a large surface area‐to‐volume ratio, adequate for high protein loading and conferring high stability. The gold nanoparticle electrodes were covered with a self‐assembled monolayer of 11‐mercaptoundecanoic acid for electrostatic immobilization of cytochrome c (cyt c). At the electrode, direct, reversible electron transfer from cyt c was observed with remarkable stability. Moreover, an extremely high surface coverage of electrochemically active cyt c, 167 fully packed monolayers, was obtained through use of the electrode.  相似文献   

6.
Cytochrome (cyt) c transports electrons from Complex III to Complex IV in mitochondria. Cyt c is ordinarily anchored to the mitochondrial membrane through interaction with cardiolipin (CL), however its release into the cytosol initiates apoptosis. The cyt c interaction site with CL‐containing bicelles was characterized by NMR spectroscopy. Chemical shift perturbations in cyt c signals upon interaction with bicelles revealed that a relatively wide region, which includes the A‐site, the CXXCH motif, and the N‐ and C‐terminal helices, and contains multiple Lys residues, interacts cooperatively with CL. The specific cyt c–CL interaction increased with increasing CL molecules in the bicelles. The location of the cyt c interaction site for CL was similar to those for Complex III and Complex IV, thus indicating that cyt c recognizes lipids and partner proteins in a similar way. In addition to elucidating the cyt c membrane‐binding site, these results provide insight into the dynamic aspect of cyt c interactions in mitochondria.  相似文献   

7.
Shie JW  Yogeswaran U  Chen SM 《Talanta》2008,74(5):1659-1669
A novel conductive biocomposite film (MWCNTs–DNA–cyt c) which contains multi-walled carbon nanotubes (MWCNTs) along with the incorporation of DNA and cytochrome c (cyt c) has been synthesized on glassy carbon electrode (GCE), gold (Au), indium tin oxide (ITO) and screen printed carbon electrode (SPCE) by potentiostatic methods. The presence of both MWCNTs and DNA in the biocomposite film enhances the surface coverage concentration (Γ), increases the electron transfer rate constant (Ks) up to 21% and decreases the degradation of cyt c during the cycling. The biocomposite film also exhibits a promising enhanced electrocatalytic activity towards the reduction of halogen oxyanions and oxidation of biochemical compounds such as ascorbic acid and l-cysteine. The cyclic voltammetry has been used for the measurement of electroanalytical properties of analytes by means of biocomposite film modified GCEs. The sensitivity of MWCNTs–DNA–cyt c modified GCE possess higher values than the values obtained for DNA–cyt c film modified GCE. Further, the reduction potentials of halogen oxyanions Epc, clearly shows that the activity of the biocomposite is dependent on the electronegativity of halogen oxyanions. Electrochemical quartz crystal microbalance studies revealed the enhancements in the functional properties of MWCNTs, DNA and cyt c. We have studied the surface morphology of the biocomposite films using scanning electron microscopy and atomic force microscopy, which revealed that DNA and cyt c have been incorporated on MWCNTs. Finally, the flow injection analysis has been used for the amperometric detection of analytes at MWCNTs–DNA–cyt c film modified SPCE.  相似文献   

8.
The supercharging effect of sulfolane on cytochrome c (cyt c) during electrospray ionization mass spectrometry (ESI-MS) in the absence of conformational effects was investigated. The addition of sulfolane on the order of 1 mM or greater to denaturing solutions of cyt c results in supercharging independent of protein concentration over the range of 0.1 to 10 μM. While supercharging was observed in the positive mode, no change in the charge state distribution was observed in the negative mode, ruling out polarity-independent factors such as conformational changes or surface tension effects. A series of sulfolane adducts observed with increasing intensity concurrent with increasing charge state suggests that a direct interaction between sulfolane and the charged sites of cyt c plays an important role in supercharging. We propose that charge delocalization occurring through large-scale dipole reordering of the highly polar supercharging reagent reduces the electrostatic barrier for proximal charging along the cyt c amino acid chain. Supporting this claim, supercharging was shown to increase with increasing dipole moment for several supercharging reagents structurally related to sulfolane.  相似文献   

9.
Direct electron transfer (DET) of bilirubin oxidase from Myrothecium verrucaria (BOD) was established on promoter‐modified gold electrodes. The electrochemical behavior of the enzyme in solution was studied by means of cyclic voltammetry evaluating the biocatalytic reduction of dioxygen. The reaction of BOD at Au electrodes was shown to be efficient only at low pH. In addition, a novel interaction between BOD and cytochrome c (cyt.c) was found. It was shown that BOD efficiently accepts cyt.c as an electron donor in both cases when cyt.c is in solution and electrostatically adsorbed. The results suggest that cyt.c can play the role of a mediator facilitating electron transfer in a pH range where no DET could be observed between the enzyme and the electrode. For the interaction between cyt.c and BOD in solution the reaction kinetics has been studied electrochemically and spectrophotometrically.  相似文献   

10.
The epitope specificity of antibodies to horse cytochrome c (cyt.c) in the primary and secondary immune response of C57BL mice was studied by means of the ELISA technique with synthetic peptides of cyt.c. It was found that, in the early primary response, N- and C-end fragments of cyt.c (peptides 2–13, 14–22 and 92–104) were preferentially recognized. In the secondary response, more antibodies to the epitopes of the central part of the molecule (peptides 61–69 and 46–56) were found. This was presumed to be due to the mode of cyt.c processing and presentation in the course of immune response: at first, cyt.c was recognized in the native form and then in the processed one. The capacity of cyt.c peptides to stimulate the formation of cyt.c-specific antibody-secreting cells (ASC) was studied in splenocyte culture of C57BL mice. Peptides stimulated more ASC than cyt.c did, but larger molar doses of peptides were required. Comparison of the capacity of related peptides (1–13 and 2–13, 61–69, 61–77 and 57–77) to be recognized by antibodies produced to native cyt.cin vivo and to stimulate anti-cyt.c ASC in vitro suggested certain molecular requirements for cyt.c epitope and agretope formation. These were partially confirmed by computer analysis.  相似文献   

11.
We synthesized heterobifunctional poly(ethylene oxide) (PEO) (α‐formyl‐ω‐mercapto‐PEO; CHO‐PEO400‐SH, average molecular weight of PEO part being 400), which had both an aldehyde group as a binding site with amino group of protein and a mercapto group for gold electrode surface. The CHO‐PEO400‐SH was adsorbed on a gold electrode surface and cytochrome c (cyt.c) was fixed on this modified electrode. The redox response of covalently immobilized cyt.c was observed on the cyclic voltammetry measurement, showing that CHO‐PEO400‐SH can be used as a linker to fix cyt.c on an electrode. Another type of heterobifunctional PEO (α‐formyl‐ω‐(2‐pyridyldithio)‐PEO; CHO‐PEO300‐SS‐Py), which had an aldehyde group and a 2‐pyridinethiol (2‐Py) through disulfide bond, was synthesized to form co‐adsorbed monolayer of PEO chain and 2‐Py on an electrode surface. It was expected, due to the spacer with shorter PEO chain and lower surface density, that better redox response of the fixed cyt.c was obtained. However, the redox response of fixed cyt.c was not detected on the CHO‐PEO300‐SS‐Py modified gold electrode. Instead, this heterobifunctional PEO was found to function as a good promoter for cyt.c dissolved in phosphate buffer solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Cytochrome c was immobilized on a mixed-thiol (mercaptoundecanoic acid/mercaptoundecanol) modified gold electrode (MUA:MU/cyt c electrode). Characterization of the cyt c electrode showed a quasi-reversible, electrochemical redox behavior with a formal potential of −13±5 mV (versus Ag/AgCl) for the surface adsorbed protein and 3±5 mV for covalently immobilized cyt c. The heterogeneous electron transfer rate constants were determined to be about 70 and 40 s−1 for both states of the protein, respectively. They were found to be significantly higher than those of pure MUA-modified cyt c electrodes (MUA/cyt c electrodes). The interaction of superoxide radicals (O2) with the (MUA:MU)/cyt c electrode was characterized and used for an amperometric O2 detection. The influence of H2O2 and uric acid on the sensor signal was investigated. The sensitivity of the (MUA:MU)/cyt c electrode to O2 was significantly improved compared with that of the MUA/cyt c electrode. Based on a kinetic model for the superoxide detection system, a new calibration method was established. This simple and fast method used the spontaneous dismutation of KO2 and was compared with the enzymatic superoxide generation system using xanthine oxidase.  相似文献   

13.
By an example of cysteamine iron nitrosyl complex {Fe2[S(CH2)2NH3]2(NO)4}SO4 ? 2.5H2O (CAC) it was shown for the first time that the NO donor hydrolysis in the presence of ferricytochrome c (cyt c3+) affords the iron nitrosyl complex NO—cyt c3+. It was found that cyt c3+ can serve as a depot for NO evolved during the hydrolysis of CAC. In the presence of CAC, the rate of NO—cyt c3+ complex decomposition to NO and cyt c3+ depends on the molar ratio [cyt c3+]: [CAC] and at [cyt c3+]: [CAC] = 0.3 it was found to be lower than that in decomposition of CAC in the absence of cyt c3+. As a result, the total NO evolving process becomes 5.6 times more prolonged. The number of NO groups evolved from CAC can be determined by the reaction of CAC with cyt c3+ in the presence of ferricyanide: at most one NO group is evolved to a solution in the spontaneous hydrolysis of CAC (pH 7.0), and no less than three of them are evolved from oxidized CAC.  相似文献   

14.
Preliminary microcalorimetric studies have been performed to analyse the response of a whole epiphytic lichen tissue (Evernia prunastri) to 2-chlorophenol (2Cl-), a pollutant of oil mill waste-water, in order to evaluate whether the tissue might be used to assess the toxic characteristics of polluted waters. The obtained results (lichen viability expressed in hours, enthalpy variations for the 2Cl-/lichen interactions) were used to create a lichen-based biosensor that uses an amperometric oxygen electrode (a Clark electrode) as a transducer. The lichen catalyses aromatic ring cleavage (via pyrocatechase enzymes present in the lichen), and transforms aromatic substances like 2Cl- into muconic acid (C6H6O4). Following a full electroanalytical characterisation, the performance of the proposed lichen biosensor was compared to that of a biosensor based on Pseudomonas putida cells, which was originally constructed to monitor benzene in different matrices (water, air, petrol and oil) and was tested in our laboratory previously.  相似文献   

15.
《Electroanalysis》2004,16(10):821-826
A sensor for cytochrome c (cyt c) was developed using a carbon paste electrode (CPE) modified with cellulose‐DNA. Cyt c was adsorbed on the cellulose‐DNA modified CPE through the electrostatic interaction between them. Owing to this process, a pair of well‐defined peaks appeared at +48 mV/85 mV (Epc/Epa vs. Ag/AgCl). This property of the cellulose‐DNA modified CPE was utilized for the analysis of cyt c in a biological sample. The optimum experimental conditions for analysis were investigated and a calibration plot was obtained between 1.0×10?4 M and 1.0×10?6 M (±5% at n=5) at the optimized condition. The detection limit for cyt c at the optimized experimental condition was 5.0×10?7 M (S/N=3) for 30 min of deposition time with differential pulse voltammetry (DPV). The real sample analysis was carried out with the standard addition method to evaluate the developed method. The content of cyt c in total proteins of 80.0 mg/mL in rat mitocondria fractions was determined to be 0.12 (±0.02) mg/mL.  相似文献   

16.
Summary A number of substituted 2,3-dimethylfuro[3,2-c]pyridines was synthesized. 3-(4,5-Dimethyl-2-furyl)propenoic acid (1) was converted to the acid azide2, which in turn was cyclized to give 2,3-dimethyl-5H-furo[3,2-c]pyridine-4-one (3) by heating at 240°C in Dowtherm. The pyridone3 was chlorinated with phosphorus oxychloride to give4, which was reduced with zinc and acetic acid to 2,3-dimethylfuro[3,2-c]pyridine (5). Treatment of4 with several secondary heterocyclic amines led to compounds6a–6c. Reaction of pyridone3 with phosphorus pentasulfide rendered the thione7, which was methylated to8a. The 4-methoxy derivative8b was obtained from4 with sodium methoxide. 2,3,5-Trimethylfuro[3,2-c]pyridine-4-one (9) was obtained by reaction of3 with methyl iodide.Dedicated to Professor Dr.Fritz Sauter on the occasion of his 65th birthday  相似文献   

17.
Respiratory chain complexes convert energy by coupling electron flow to transmembrane proton translocation. Owing to a lack of atomic structures of cytochrome bc1 complex (Complex III) from thermophilic bacteria, little is known about the adaptations of this macromolecular machine to hyperthermophilic environments. In this study, we purified the cytochrome bc1 complex of Aquifex aeolicus, one of the most extreme thermophilic bacteria known, and determined its structure with and without an inhibitor at 3.3 Å resolution. Several residues unique for thermophilic bacteria were detected that provide additional stabilization for the structure. An extra transmembrane helix at the N-terminus of cyt. c1 was found to greatly enhance the interaction between cyt. b and cyt. c1, and to bind a phospholipid molecule to stabilize the complex in the membrane. These results provide the structural basis for the hyperstability of the cytochrome bc1 complex in an extreme thermal environment.  相似文献   

18.
The direct electrochemistry of cytochrome c (cyt c) on a gold electrode modified with 3-mercaptopropylphosphonic acid [HS-(CH2)3-PO3H2, MPPA] self-assembled monolayers (SAMs) was for the first time investigated. Electrochemical measurements and surface-enhanced infrared absorption spectroscopic reveal that the adsorption kinetics of cyt c on the MPPA-SAMs is very fast (saturation adsorption is completed within 5 s) and the immobilized cyt c molecules retain their native secondary protein structure. The nature of interaction between cyt c and -PO3H2 groups is mainly the electrostatic interaction. The direct electrochemistry of the immobilized cyt c on the -PO3H2 terminated SAMs with short chain is nearly reversible. Its formal potential (E0′ = 18 ± 3 mV vs. SCE) is very close to that of cyt c in an aqueous solution (E0′ = 18-22 mV vs. SCE). In addition, the electron transfer rate of cyt c immobilized on -PO3H2 terminated SAMs is relatively slow as compared to -SO3H and -COOH terminated SAMs, indicating excess negative charge density on the SAMs surface will decrease the electron transfer rate of cyt c.  相似文献   

19.
(E)-3-{5-[3-(Trifluoromethyl)phenyl]furan-2-yl}propenoic acid (I) was prepared from 5-[3-(tri-fluoromethyl)phenyl]furan-2-carbaldehyde under the Doebner’s conditions. The obtained acid was converted to the corresponding azide II, which was cyclized by heating in diphenyl ether to 2-[3-(trifluoromethyl)phenyl]-4,5-dihydrofuro[3,2-c]pyridin-4-one (III). This compound was aromatized with phosphorus oxychloride to chloroderivative IV which was reduced with H2NNH2-Pd/C to the title compound V. 2-[3-(Trifluoromethyl)phenyl]furo[3,2-c]pyridin-5-oxide (VI) was synthesized by reaction of V with 3-chloroperoxybenzoic acid in dichloromethane. On treatment of VI with benzoyl chloride and potassium cyanide (Reissert-Henze reaction), corresponding 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine-1-carbonitrile (VII) resulted. 5-Amino-2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridin-5-ium-4-methylbenzene sulfonate (VIII) was prepared by direct N-amination of the title compound V with 1-[(aminooxy)sulfonyl]-4-methylbenzene in dichloromethane. Then, VIII was transformed to a non-isolated zwitterionic N-imid IX which afforded the corresponding furo[3,2-c]pyrazolo[1,5-a]pyridine carboxylic acid esters X, XI by 1,3-dipolar cycloaddition reactions with dimethyl but-2-ynedionate (DBD) or ethyl propiolate. The structures of all compounds were confirmed by their IR and NMR spectra. Presented at the 1st International Conference “Applied Natural Sciences” on the occasion of 10th anniversary of the University of St. Cyril and Methodius, Trnava, 7–9 November 2007.  相似文献   

20.
This paper describes the development of a xanthine oxidase/poly‐m‐phenylenediamine (XOD‐PPD)‐modified electrode. The biosensor was constructed by encapsulating XOD in a sol‐gel matrix deposited onto a platinum based screen‐printed electrode functionalized with a permselective PPD membrane. The hydrogen peroxide generated as a final product of the enzymatic reaction between the hypoxanthine and the XOD or by the spontaneous dismutation of superoxide radicals was selectively monitored at +700 mV. The use of a highly selective PPD layer blocked the nonspecific oxidation of other oxidizable molecules. Finally the biosensor was applied to the determination of the antioxidant capacity of acetylsalicylic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号