首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated experimentally the formation of anions and cations of deoxyribose sugar (C(5)H(10)O(4)) via inelastic electron interaction (attachment/ionization) using a monochromatic electron beam in combination with a quadrupole mass spectrometer. The ion yields were measured as a function of the incident electron energy between about 0 and 20 eV. As in the case of other biomolecules (nucleobases and amino acids), low energy electron attachment leads to destruction of the molecule via dissociative electron attachment reactions. In contrast to the previously investigated biomolecules dehydrogenation is not the predominant reaction channel for deoxyribose; the anion with the highest dissociative electron attachment (DEA) cross section of deoxyribose is formed by the release of neutral particles equal to two water molecules. Moreover, several of the DEA reactions proceed already with "zero energy" incident electrons. In addition, the fragmentation pattern of positively charged ions of deoxyribose also indicates strong decomposition of the molecule by incident electrons. For sugar the relative amount of fragment ions compared to that of the parent cation is about an order of magnitude larger than in the case of nucleobases. We determined an ionization energy value for C(5)H(10)O(4) (+) of 10.51+/-0.11 eV, which is in good agreement with ab initio calculations. For the fragment ion C(5)H(6)O(2) (+) we obtained a threshold energy lower than the ionization energy of the parent molecular ion. All of these results have important bearing for the question of what happens in exposure of living tissue to ionizing radiation. Energy deposition into irradiated cells produces electrons as the dominant secondary species. At an early time after irradiation these electrons exist as ballistic electrons with an initial energy distribution up to several tens of electron volts. It is just this energy regime for which we find in the present study rather characteristic differences in the outcome of electron interaction with the deoxyribose molecule compared to other nucleobases (studied earlier). Therefore, damage induced by these electrons to the DNA or RNA strands may start preferentially at the ribose backbone. In turn, damaged deoxyribose is known as a key intermediate in producing strand breaks, which are the most severe form of lesion in radiation damage to DNA and lead subsequently to cell death.  相似文献   

2.
L.K. Liu  S.E. Unger  R.G. Cooks 《Tetrahedron》1981,37(6):1067-1073
Organic compounds can be ionized by sputtering the solid sample. The resulting negative and positive secondary ions provide mass spectra which characterize both the molecular weights and the structures of the compounds. Ionization occurs either by direct ejection of charged species from the solid into vacuum or by electron or proton transfer. The sputtered secondary ions dissociate unimolecularly to give fragment ions. These reactions are identical to those which occur when the secondary ions are independently generated by chemical ionization, selected by mass and dissociated in a high energy gas phase collision. The negative ion SIMS spectra show molecular ions (M?.) or (M-H)? ions as the dominant high mass species together with fragments due to decarboxylation, dehydration and losses of other simple molecules. Stronger acids show larger (M-H)?/M?.abundance ratios. The positive ion spectra are complementary and also useful in characterizing molecular structures. Attachment of cations to organic molecules (cationization) occurs much more readily than anion attachment and this makes negative SIMS spectra simpler than these positive ion counterparts.  相似文献   

3.
Dissociation of singly charged species is more challenging compared with that of multiply charged precursor ions because singly charged ions are generally more stable. In collision activated dissociation (CAD), singly charged ions also gain less kinetic energy in a fixed electric field compared with multiply charged species. Furthermore, ion–electron and ion–ion reactions that frequently provide complementary and more extensive fragmentation compared with CAD typically require multiply charged precursor ions. Here, we investigate electron induced dissociation (EID) of singly deprotonated peptides and compare the EID fragmentation patterns with those observed in negative ion mode CAD. Fragmentation induced upon electron irradiation and collisional activation is not specific and results in the formation of a wide range of product ions, including b-, y-, a-, x-, c-, and z-type ions. Characteristic amino acid side chain losses are detected in both techniques. However, differences are also observed between EID and CAD spectra of the same species, including formation of odd-electron species not seen in CAD, in EID. Furthermore, EID frequently results in more extensive fragmentation compared with CAD. For modified peptides, EID resulted in retention of sulfonation and phosphorylation, allowing localization of the modification site. The observed differences are likely due to both vibrational and electronic excitation in EID, whereas only the former process occurs in CAD.  相似文献   

4.
5.
Histidine is an aromatic amino acid crucial for the biological functioning of proteins and enzymes. When biological matter is exposed to ionising radiation, highly energetic particles interact with the surrounding tissue which leads to efficient formation of low‐energy electrons. In the present study, the interaction of low‐energy electrons with gas‐phase histidine is studied at a molecular level in order to extend the knowledge of electron‐induced reactions with amino acids. We report both on the formation of positive ions formed by electron ionisation and negative ions induced by electron attachment. The experimental data were complemented by quantum chemical calculations. Specifically, the free energies for possible fragmentation reactions were derived for the τ and the π tautomer of histidine to get insight into the structures of the formed ions and the corresponding neutrals. We report the experimental ionisation energy of (8.48 ± 0.03) eV for histidine which is in good agreement with the calculated vertical ionisation energy. In the case of negative ions, the dehydrogenated parent anion is the anion with the highest mass observed upon dissociative electron attachment. The comparison of experimental and computational results was also performed in view of a possible thermal decomposition of histidine during the experiments, since the sample was sublimated in the experiment by resistive heating of an oven. Overall, the present study demonstrates the effects of electrons as secondary particles in the chemical degradation of histidine. The reactions induced by those electrons differ when comparing positive and negative ion formation. While for negative ions, simple bond cleav ages prevail, the observed fragment cations exhibit partly restructuring of the molecule during the dissociation process.  相似文献   

6.
Multiply charged anions (MCAs) represent exotic, highly energetic species in the gas-phase due to their propensity to undergo unimolecular decay via electron loss or ionic fragmentation. There is considerable fundamental interest in these systems since they display novel potential energy surfaces that are characterized by Coulomb barriers. Over recent years, considerable progress has been made in understanding the factors that affect the stability, decay pathways and reactivity of gas-phase MCAs, mainly as a result of the application of electrospray ionization as a generic technique for transferring solution-phase MCAs into the gas-phase for detailed characterization. We review contemporary work in this field, focusing on the factors that control the intrinsic stability of MCAs, both as isolated gas-phase ions, and on their complexation with solvent molecules and counter-ions. While studies of MCAs are primarily of fundamental interest, several classes of important biological ions are commonly observed as MCAs in the gas-phase (e.g. oligonucleotides, sugars). Recent results for biologically relevant ions are emphasised, since a fundamental understanding of the properties of gas-phase MCAs will be highly valuable for developing further analytical methods to study these important systems.  相似文献   

7.
双电荷离子[C_(12)H_(12)N_2O]~(2+)和[C_(12)H_(12)N_2S]~(2+)的气相单分子分解反应研究任达,贾维平,李智立,刘淑莹(中国科学院长春应用化学研究所,长春,130022)关键词双电荷离子,质量分析离子动能谱,串联质谱,4...  相似文献   

8.
Supercritical fluids are beginning to be used widely in chemistry. Applications range from extraction and chromatography in analytical chemistry to solvents for reaction chemistry and preparation of new materials. Spectroscopic monitoring is important in much of supercritical chemistry, and vibrational spectroscopy is particularly useful in this context because the vibrational spectrum of a given molecule is usually quite sensitive to the environment of that molecule. Thus, vibrational spectra are excellent probes of conditions within the fluid. In this review, we describe a variety of techniques and cells for IR and Raman spectroscopy in supercritical fluids and illustrate the breadth of applications in supercritical fluids. The examples include: the use of supercritical Xe as a spectroscopically transparent solvent for chemistry and for supercritical fluid chromatography with FTIR detection of analytes; Raman spectroscopy as a monitor for gases dissolved in supercritical CO2; the effect of solvent density on hydrogen bonding in supercritical fluids and the formation of reverse micelles; IR as a monitor for the supercritical impregnation/extraction of polymers and the reactions of organometallic compounds impreganated into polymers; reactions of organometallic compounds in supercritical fluids; and finally, the use of miniature flow reactors for laboratory-scale preparative chemistry. Overall, our aim is to provide a starting point from which individual readers can judge whether such measurements might usefully be applied to their own particular problems.  相似文献   

9.
The unimolecular dissociation reactions of doubly charged ions were reported,which resulted from a tandem mass spectrometer and a reversed geometry double focusing mass spectrometer by electron impact.Mass analyzed ion kinetic energy spectrometry(MIKES) was used to obtain the kinetic energy releases in charge separation reactions of doubly charged ions.The intercharge distances between the two charges at transition states can be calculated from the kinetic energy releases.Transition structures of unimolecular dissociation reactions were infered from MIKES and MS/MS.  相似文献   

10.
Supercritical fluids:Clean solvents for green chemistry   总被引:2,自引:0,他引:2  
Supercritical fluids are becoming increasingly attractive as environmentally acceptable replacement for organic solvents in chemical reactions and material processing. This paper highlights some of the properties of supercritical fluids, especially supercritical CO2, which offer particular advantages for the handling of polymers, metal complexes and the environmentally more friendly synthesis and manufacture of chemicals. The paper includes some of the researches in University of Nottingham and a number of recent reviews which together provide a comprehensive introduction.  相似文献   

11.
Results from a tandem mass spectrometry (MS/MS) study, obtained with a reverse-geometry mass spectrometer, of the unimolecular and collision-induced reactions of doubly charged free-base and metal containing alkyl-substituted porphyrins formed by electron ionization are reported. These doubly charged porphyrin ions dissociate to yield both singly and doubly charged product ions via a number of reactions. This article classifies the major reactions observed, illustrating each with the appropriate spectra. Supplementary data from the same porphyrins, acquired with a tandem quadrupole MS/MS instrument, are also presented. The potential utility of some of these reactions as new methods for porphyrin analysis is discussed.  相似文献   

12.
An unusually large fraction of multiply charged ions is observed in 'electron-free' matrix-assisted laser desorption/ionization (MALDI). Here we investigate how the yield of multiply charged ions depends on experimental parameters in MALDI. It is found to increase if measures are taken to limit the number of electrons in the plume, for example, by using non-metallic MALDI targets or low laser pulse energies. The ionization energy of the matrix is another important parameter that affects the yield of multiply charged ions: matrices with high ionization energies lead to greater intensities of multiply charged ions. It is furthermore proposed that some of the fragment ions observed in MALDI are due to reactions of analyte with electrons in the plume. The possibility of electron capture dissociation of multiply charged ions produced by MALDI is shown.  相似文献   

13.
J.B. Moffat 《Tetrahedron letters》1981,22(11):1001-1004
Stabilization energies of three α-isocyanocarbonium ions relative to those of the parent carbonium ions have been found from fully geometry-optimized STO-5G total energies of all charged and neutral species and relevant isodesmic reactions, α-isocyanosubstitution, unlike α-cyanosubstitution, stabilizes all three carbonium ions considered here. The stabilization energy appears to depend upon a number of factors, electron delocalization, the inductive effect, and changes in steric. repulsion, the latter of which arise from changes in bond angles in the formation of the carbonium ions from their neutral precursors.  相似文献   

14.
We study dissociative electron attachment to furan (FN) (C(4)H(4)O), tetrahydrofuran (THF) (C(4)H(8)O), and fructose (FRU) (C(6)H(12)O(6)) using crossed electron/molecular beams experiments with mass spectrometric detection of the anions. We find that FN and THF are weak electron scavengers and subjected to dissociative electron attachment essentially in the energy range above 5.5 eV via core excited resonances. In striking contrast to that, FRU is very sensitive towards low energy electrons generating a variety of fragment ions via a pronounced low energy feature close to 0 eV. These reactions are associated with the degradation of the ring structure and demonstrate that THF cannot be used as surrogate to model deoxyribose in DNA with respect to the attack of electrons at subexcitation energies (<3 eV). The results support the picture that in DNA the sugar moiety itself is an active part in the initial molecular processes leading to single strand breaks.  相似文献   

15.
This Article presents the results from studies related to the chemistry of tricationic superelectrophiles. A series of triaryl methanols were ionized in Br?nsted superacids, and the corresponding tricationic intermediates were formed. The trications are found to participate in two types of reactions; both are characteristic of highly charged organic cations. One set of reactions occurs through charge migration. A second set of reactions occurs through deprotonation of an unusually acidic site on the tricationic species. One of the tricationic intermediates has been directly observed by low temperature NMR spectroscopy. These highly charged ions and their reactions have also been studied using density functional theory calculations. As a result of charge migration, electron density at a carbocation site is found to increase with progression from monocationic to pentacationic structures.  相似文献   

16.
The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.  相似文献   

17.
Dissociative electron attachment to gas phase glycine generates a number of fragment ions, among them ions observed at the mass numbers 15, 16 and 26 amu. From stoichiometry they can be assigned to the chemically rather different species NH(-)/CH(3)(-)(15 amu), O(-)/NH(2)(-)(16 amu) and CN(-)/C(2)H(2)(-)(26 amu). Here we use a high resolution double focusing two sector mass spectrometer to separate these isobaric ions. It is thereby possible to unravel the decomposition reactions of the different transient negative ions formed upon resonant electron attachment to neutral glycine in the energy range 0-15 eV. We find that within the isobaric ion pairs, the individual components generally arise from resonances located at substantial different energies. The corresponding unimolecular decompositions involve complex reaction sequences including multiple bond cleavages and substantial rearrangement in the precursor ion. To support the interpretation and assignments we also use (13)C labelling of glycine at the carboxylic group.  相似文献   

18.
A comprehensive theoretical investigation on structures and properties of niobium clusters in the range from 13 to 20 atoms, in three different charged states, is performed by using the BPW91 and M06 functionals and the cc-pVDZ-PP basis set. These species are predicted to prefer low spin ground state, i.e., singlet (for even electron) and doublet (for odd electron) systems. In terms of growth mechanism, a compact structure with one Nb encapsulated by a cage formed from five and six triangles is found to be favored over an icosahedral evolution. Unlike many 3d metals, whose volumes are much smaller, 13 and 19 Nb atoms clusters do not exist as icosahedra and double-icosahedra. A distinct case is Nb(15) as it bears a slightly distorted bcc structure. For some systems, several lower lying isomers are computed to be so close in energy that DFT computations cannot clearly establish their ground electronic states. The existence of structural isomers with comparable energy content is established for Nb(n) species with n = 13, 18, 19, and 20 in both neutral and charged states. The vibrational (IR) spectra are also calculated. While the spectra of smaller systems are strongly dependent on addition or removal of an electron from the neutral, the spectra of the larger size clusters are mostly independent of the charged state. The neutrals and their corresponding ions usually have a quite similar IR pattern. Electron affinities (EA), ionization energies (IE), average binding energies, dissociation energies, and frontier orbital energy gaps are evaluated. The computed EAs and IEs are generally in fair agreement with experiment. The Nb(15) system is observed to be stable and it can form a highly symmetric structure in all charged states with both open and closed electron shells.  相似文献   

19.
Central to the tandem mass spectrometry experiment is the process that gives rise to product ions, i.e. the reaction intermediate to stages of mass analysis. Changes in mass or charge of the parent ion (or both) are generally readily detected by all forms of tandem mass spectrometry. Charge changing, or charge permutation, reactions have a long history in mass spectrometry. However, with the advent of new ionization methods, such as electrospray ionization, and the expansion of tandem mass spectrometry instrumentation to include ion trapping instruments, the past decade has seen a major increase in the types of charge permutation reactions that can be studied. Most charge permutation reactions involve electrons or protons as the charge mediating agents. This report, therefore, provides an overview of charge permutation reactions involving protons or electrons. Particular emphasis is placed on processes that involve interactions of precursor ions with gaseous neutral species, electrons or oppositely charged ions. Charge permutation reactions involving electron gain/loss are described first according to a rough order of the energy required for the reaction beginning with the most endoergic reactions and ending with the most exoergic reactions. An analogous approach is then taken with charge permutation reactions involving proton gain/loss. Important charge permutation reactions discussed herein, among others, include those referred to as charge inversion, charge stripping, electron capture dissociation, collision-induced ionization and charge separation. These reaction types, and others described herein, are the subjects of active research and are also finding use in many current areas of application. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
借助质量分析离子动能谱和串联质谱研究了由电子轰击产生的双电荷离子的单分子亚稳碎裂及碰撞诱导分解过程,讨论了两种实验方法导致的差别因素.此外,根据质量分析离子动能谱提供的双电荷离子电荷分离反应的动能释放值计算了两电荷中心间距的最小值,以判别按不同电荷分离方式碎裂的双电荷离子的过渡态结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号