首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocontrollable self-assembly   总被引:3,自引:0,他引:3  
The incorporation of photoswitching molecules into molecular building blocks creates the possibility of photoresponsive self-assemblies in which the self-assembled architecture or self-assembling process can be controlled by external light stimulus. Among the photoswitching molecules, azobenzene has been used most widely by virtue of the large photoinduced changes in its molecular geometry and physical properties. This article reviews how azobenzene can be effectively used to construct the self-assemblies in which supramolecular structure and formation/dissociation can be altered by light.  相似文献   

2.
Switchable supramolecular self-assemblies on the basis of interaction between melamine group containing photochromic diarylethene unit (DTE) and naphthalimide derivate (1) were designed and fabricated. 1 can gelate several aprotic solvents with different morphologies. The gel turned into partial gel in ethyl acetate with the addition of DTE as a guest molecule. Both the absorption and fluorescence spectra of the assembly can be reversibly switched by alternating UV/visible light irradiation. Meanwhile, the morphology of the coassembly of 1(2)·DTE changed to film from original pieces of gel 1 in ethyl acetate. When 1(2)·DTE was irradiated by UV light, the film morphology was converted into aggregated flakes. Moreover, the surface wettability of the complex can also be switched by light irradiation. The photochromic diarylethene unit is able to modulate the fluorescence and morphology of the assembled system only by virtue of light irradiation. Therefore, these results provide further insights into fluorescence and morphology controlling, especially application in upscale smart responsive materials.  相似文献   

3.
Supramolecular self-assembly stands for the spontaneous aggregation of small organic compounds or polymers into ordered structures at any scale. When being induced by inherent molecular chiral centers or ambient asymmetric factors, asymmetric spatial arrangement between building units shall occur, which is defined as supramolecular chirality. Except for molecular design, utilizing external stimulus factors to tune supramolecular chirality is a promising approach. In this Concept article, we particularly discuss the important role of solvents in manipulating the chirality of self-assembled systems. The impact of solvents on the chirality is generally based on three properties of solvents, i.e., chirality, polarity, and active coassembly with building blocks. Molecular self-assembly in chiral solvents could undergo the chirality transfer, exhibiting a chiral induction effect. Solvent polarity often determines intermolecular orientation. As a consequence, those building blocks with both polar and apolar segments might change their chirality depending on the solvent polarity. We elaborate the active participation of solvent molecules into ordered structures together with building blocks, where solvents and building blocks exhibit a coassembly manner. By specific treatments such as heating and cooling, solvents could be released or re-entrapped, allowing a smart control over supramolecular chirality. The solvent effect in manipulating two-dimensional chiral self-assemblies is then discussed. The perspective and future development in this research field are presented at last.  相似文献   

4.
《中国化学快报》2021,32(12):3882-3885
The development of solid-state smart materials, in particular those showing photoresponsive luminescence, is highly desirable for their cutting edge applications in displays, sensors, data-storage, and anti-counterfeiting. However, to achieve both excellent photoresponsive performance and bright luminescence in solid state remains challenge. Herein, we integrate a novel photochromic fluorophore YL into flexible polymer chains, thereby enabling the resultant polymer PYL with reversible photoisomerization upon aggregation. Remarkably, the polymer PYL possesses excellent photochromic properties and aggregation-induced emission (AIE) activity, which can be attributed to the photoactive YL moiety. Upon light exposure, its film exhibits reversibly off-to-on fluorescent modulation with quick response, high emission efficiency and signal contrast, sharply different from the weak emission in solution. The novel photoresponsive AIE polymer with invisible/visible color and fluorescence transformation allows for advanced anti-counterfeiting applications. This work provides an efficient platform for constructing solid-state photocontrollable luminescent materials.  相似文献   

5.
Two tripodal C3-symmetric photoswitchable molecular systems T1 and T2 are reported that have extended conjugation at external and internal positions using an acryl group. The influence of the extended π-bonds in their absorption properties, thermal relaxation of the photoisomers and their propensities in forming supramolecular self-assemblies have been explored through spectroscopy, and microscopic studies. In particular, the investigations on the self-assembly have been carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), polarized optical microscopy (POM), X-ray diffraction studies (XRD) and atomic force microscopy (AFM). Remarkably, the position of the acryl group influences the behaviour of the two target molecules in supramolecular assembly, and also in the formation of photoresponsive organic hydrogels or microcrystals.  相似文献   

6.
Organic photochromic molecules are important for the design of photoresponsive functional materials, as switches and memories. Over the past 10 years, research efforts have been directed towards the incorporation of photoresponsive molecules into metal systems, in order either to modulate the photochromic properties, or to photoregulate the redox, optical and magnetic properties of the organometallic moieties. This review article focuses on some of the recent work reported within the last few years in the area of organometallic and coordination complexes containing photochromic ligands for the photoregulation of optical and nonlinear optical properties. The first part is related to photochromic 1,2-diarylethene (DAE)-containing metal complexes, examples of mono- and multi-DAE metal-based will be discussed. The second part deals with metal complexes incorporating spiropyran and spirooxazine derivatives.  相似文献   

7.
8.
Fine‐tuning of the molecular structure of organic bistable compounds to improve their photochromic performance or to introduce additional functions remains an important issue in the development of photoresponsive materials. Diarylethenes bearing heterocyclic moieties belong to the most intensively studied class of organic photochromes due to their excellent photochemical properties. A huge number of diarylethenes have been synthesized so far. Analysis of the literature data shows that there are very worthy examples of diarylethenes developed by the Irie and Feringa groups, which can be the common starting material for a number of diarylethenes functionalized in hetaryl moieties. We refer to these structures as photochromic diarylethene precursors. These diarylethenes have proved to be very useful in the construction of functional molecules with desired properties. On the other hand, in our groups, we have elaborated on diarylethene precursors with modifiable ethene bridges. In this review, we have collected examples of such structures and their chemical modifications, leading to the improvement or fine‐tuning of photochromic switching.  相似文献   

9.
Azobenzenes are photochromic molecules that possess a large range of applications. Their syntheses are usually simple and fast, and their purifications can be easy to perform. Oligosaccharide is also a wide family of biopolymer constituted of linear chain of saccharides. It can be extracted from biomass, as for cellulose, being the principal constituent of plant cell wall, or it can be enzymatically produced as for cyclodextrins, having properties not far from cellulose. Combining these two materials families can afford interesting applications such as controlled drug-release systems, photochromic liquid crystals, photoresponsive films or even fluorescent indicators. This review will compile the different syntheses of azo-dyes-grafted oligosaccharides, and will show their various applications.  相似文献   

10.
《Supramolecular Science》1998,5(3-4):373-377
Organic photochromic units and molecules can be regarded as light-driven nano molecular machines. Once such molecules are aligned at a surface, the supramolecular organization provides an efficient macroscopic mechanical response in a collective way. Amphiphilic polymers having an azobenzene (Az) side chain are the favorable materials for observation of such effects since they show marked photomechanical response with essentially full reversibility. An in situ Brewster angle microscopic observation showed marked morphological and rheological photoinduced changes in the molecular films. Moreover, we have newly found that the identical photosensitive molecular film transferred on to a solid mica surface shows large morphological changes under highly humid conditions as proven by atomic force microscopy (AFM). It is supposed that the molecular film is driven in the same mechanism both on water and water-adsorbed mica surfaces. These microscopic observations provide new insights of the photomechanical response in photochromic monolayers.  相似文献   

11.
A photoresponsive discrete metallogelator was rationally designed by incorporating a photochromic azobenzene subunit in the structure of a redox‐active ferrocene–peptide conjugate. The target molecule was purposefully equipped with a dipeptide unit capable of self‐assembly in response to sonication. The designed molecule was shown to undergo supramolecular self‐assembly and achieve organogelation in response to ultrasound, light, heat, and redox signals. The sol–gel phase transition of the designed gelator was found to be sensitive to a plethora of input stimuli, allowing the application of the sol–gel transition behavior in basic logic gate operations. A gel‐based NOT logic gate operation was realized when the redox‐active property of the organogel was examined by using different oxidizing agents. The smart response of the gelator was further exploited in designing XOR operations under oxidizing or non‐oxidizing conditions.  相似文献   

12.
There is a growing interest for constructing supramolecular hollow tubes from amphiphilic molecules. Aqueous solutions of the ethanolamine salt of 12-hydroxystearic acid are known to form tubes of several tens of micrometers in length with a temperature-tunable diameter. However, the phase behavior of this system has not been fully studied. Herein, we report the variation of various physico-chemical parameters on the self-assembling properties of this system. The effects of the ionic strength, ethanol, doping with other lipids, pH, concentration, and the fatty acid/ethanolamine molar ratio R were investigated by both phase-contrast microscopy and DSC. We observed the formation of tubes in a wide range of parameters. For instance, the molar ratio R can be modified from 2/3 to 5/2 without altering the formation of tubes. In some but not all cases, the tube diameter still varied with temperature. These findings show that tubes form under various experimental conditions. This should increase the interest in producing such self-assemblies from low-cost fatty acids.  相似文献   

13.
Creating cavities in varying levels, from molecular containers to macroscopic materials of porosity, have long been motivated for biomimetic or practical applications. Herein, we report an assembly approach to multiresponsive supramolecular gels by integrating photochromic metal–organic cages as predefined building units into the supramolecular gel skeleton, providing a new approach to create cavities in gels. Formation of discrete O‐Pd2L4 cages is driven by coordination between Pd2+ and a photochromic dithienylethene bispyridine ligand (O‐PyFDTE). In the presence of suitable solvents (DMSO or MeCN/DMSO), the O‐Pd2L4 cage molecules aggregate to form nanoparticles, which are further interconnected through supramolecular interactions to form a three‐dimensional (3D) gel matrix to trap a large amount of solvent molecules. Light‐induced phase and structural transformations readily occur owing to the reversible photochromic open‐ring/closed‐ring isomeric conversion of the cage units upon UV/visible light radiation. Furthermore, such Pd2L4 cage‐based gels show multiple reversible gel–solution transitions when thermal‐, photo‐, or mechanical stimuli are applied. Such supramolecular gels consisting of porous molecules may be developed as a new type of porous materials with different features from porous solids.  相似文献   

14.
In recent years, organic field-effect transistors (OFETs) with high performance and novel multifunctionalities have attracted considerable attention. Meanwhile, featured with reversible photoisomerization and the corresponding variation in color, chemical/physical properties, photochromic molecules have been applied in sensors, photo-switches and memories. Incorporation of photochromic molecules to blend in the device functional layers or to modify the interfaces of OFETs is common way to build photo-transistors. In this review, we focus on the recent advantages on the study of photoresponsive transistors involving one of three typical photochromic compounds spiropyran, diarylethene and azobenzene. Three main strategies are demonstrated in detail. Firstly, photochromic molecules are doped in active layers or combined with semiconductor structure thus forming photoreversible active layers. Secondly, the modification of dielectric layer/active layer interface is mainly carried out by bilayer dielectric. Thirdly, the photo-isomerization of self-assembled monolayer (SAM) on the electrode/active layer interface can reversibly modulate the work functions and charge injection barrier, result in bifunctional OFETs. All in all, the combination of photochromic molecules and OFETs is an efficient way for the fabrication of organic photoelectric devices. Photoresponsive transistors consisted of photochromic molecules are potential candidate for real applications in the future.  相似文献   

15.
《Supramolecular Science》1997,4(1-2):101-112
In the last few years, there have been a number of research papers on self-assemblies of molecules as ‘advanced’ or ‘smart’ materials. The inspiration for this exciting research, without question, comes from the biological world, where, for example, the lipid bilayer of the cell membrane is the most important self-assembling system. Although the first report on self-assembled bilayer lipid membranes (BLMs) in vitro was published in 1962, interface science, including surface and colloid science, has been dealing with these interfacial self-assemblies of amphiphilic molecules since Robert Hooke's time (1672). BLMs have been used in a number of applications, ranging from basic membrane biophysics studies to the conversion of solar energy via water photolysis, and to biosensor development using supported bilayer lipid membranes (s-BLMs and sb-BLMs). This paper briefly summarizes the past research on the use of BLMs as models of biological membranes and describes some details of our current work on supported BLMs as practical biosensors. Additionally, experiments carried out in close collaboration with others on s-BLMs and sb-BLMs are presented.  相似文献   

16.
Supramolecular chirality, generated by the asymmetric assembly of chiral or achiral molecules, has attracted intense study owing to its potential to offer insights into natural biological structures and its crucial roles in advanced materials. The optical activity and stacking pathway of building molecules both greatly determine the chirality of the whole supramolecular structure. The flexibility of supramolecular structures makes their chirality easy to modulate through abundant means. Adjustment of the molecular structure or packing mode, or external stimuli that act like a finger gently pushing toy bricks, can greatly change the chirality of supramolecular assemblies. The dynamic regulation of chiral nanostructures on the intramolecular, intermolecular, and external levels could be regarded as the modulatory essence in numerous strategies, however, this perspective is ignored in most reviews in the literature. Herein, therefore, we focus on the ingenious dynamic modulation of chiral nanostructures by these factors. Through dynamic modulation with changes in chiroptical spectroscopy and electron microscopy, the mechanism of formation of supramolecular chirality is also elaborated.  相似文献   

17.
Control over the photochemical outcome of photochromic molecules in solution represents a major challenge, as photoexcitation often leads to multiple competing photochemical and/or supramolecular pathways resulting in complex product mixtures. Herein, we demonstrate precise and efficient control over the photochemical behaviour of cyanostilbenes in solution using a straightforward solvent-controlled approach based on supramolecular polymerization. To this end, we designed a π-extended cyanostilbene bolaamphiphile that exhibits tuneable solvent-dependent photochemical behaviour. Photoirradiation of the system in a monomeric state (in organic solvents) exclusively leads to a highly reversible and efficient E/Z photoisomerization, whereas a nearly quantitative [2 + 2] photocycloaddition into a single cyclobutane (anti head-to-tail) occurs in aqueous solutions. These results can be rationalized by a highly regular and preorganized antiparallel J-type arrangement of the cyanostilbene units that is driven by aqueous supramolecular polymerization. The presented concept demonstrates a novel approach towards solvent-selective and environmentally friendly photochemical transformations, which is expected to broaden the scope of supramolecular polymerization.

Controlled supramolecular polymerization is used to switch the photoresponsive behaviour of cyanostilbenes from a reversible E/Z photoisomerization in organic solvents to a highly efficient and selective [2 + 2] photocycloaddition in aqueous media.  相似文献   

18.
The frontiers of novel photoresponsive materials constructed with photochromes and transition metal complexes are surveyed in this review. Strategies to develop new photofunctions are categorized into four types. In the first category, intramolecular electronic interactions between photochromes and metal complexes produce entangled responses such as redox-regulated photochromic reactions or tristable photochromism. In the second, light-induced molecular structural rearrangements of photochromes induce the transformation of flexible and labile coordination structures, which can be applied to complex photomechanics or photoelectron conversion. In the third, the photochromic moiety also acts as a photonic switch, transmitting a metal-metal interaction when it is located between two metal complex moieties. The last category concerns the development of new photochromic reactions, involving metal-ligand bond rearrangements. These reactions potentially induce drastic electronic tuning of the metal center, and can be used to develop light-driven molecular machines.  相似文献   

19.
DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.  相似文献   

20.
Photoresponsive OFETs were fabricated based on a tri-component active layer (NDI2OD-DTYM2, spiropyran and polystyrene). The results demonstrated that these OFETs displayed photoresponsive feature to alternate UV and vis light due to the photoisomerization of spiropyran between the closed-ring state and ionic open-ring state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号