首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of the Coriolis force on the nonsteady two-dimensional sink or source flow has been studied theoretically. With the assumptions of incompressibility and invisddity of fluid, the equations governing the flow are still non-linear. However, a set of analytical and exact solutions is obtained for the velocity and pressure distributions. The result shows that no significant vortex flow can be induced by a source flow, the circulation produced there mainly is because the observer is moving with the rotating system; however, a sink will always induce a vortex, the strength of circulation in the sink flow is simply in proportion to the rotating speed of the system and the time integrated sink strength. As the system is under a constant rotating speed, the circulation will vanish only when the time integrated sink strength vanishes. Several special cases of sink strength are examined and their results are presented in this paper. The purpose of this study is mainly to relate the strength of circulation with the strength of sink and source. Consequently, it- can be applied to the weather forecast for hurricanes or tornadoes.  相似文献   

3.
A vortex analog is found for a potential three-dimensional source. The possibility of extending the known method of superposition to the case of axisymmetric vortex flows is indicated. Considered as an illustration is the axisymmetric homogeneous helical flow around a half-body. It is shown that the pressure is constant in an axisymmetric vortex stream without a circumferential velocity.  相似文献   

4.
 In this paper we present a mathematical analysis of heat and mass transfer phenomena in a visco–elastic fluid flow over an accelerating stretching sheet in the presence of heat source/sink, viscous dissipation and suction/blowing. Similarity transformations are used to convert highly non-linear partial differential equations into ordinary differential equations. Several closed form analytical solutions for non-dimensional temperature, concentration, heat flux, mass flux profiles are obtained in the form of confluent hypergeometric (Kummer's) functions for two different cases of the boundary conditions, namely, (i) wall with prescribed second order power law temperature and second order power law concentration (PST), and (ii) wall with prescribed second order power law heat flux and second order power law mass flux (PHF). The effect of various physical parameters like visco–elasticity, Eckert number, Prandtl number, heat source/sink, Schmidt number and suction/blowing parameter on temperature and concentration profiles are analysed. The effects of all these parameters on wall temperature gradient and wall concentration gradient are also discussed. Received on 23 March 2000 / Published online: 29 November 2001  相似文献   

5.
This study is concerned with the magnetohydrodynamic (MHD) rotating boundary layer flow of a viscous fluid caused by the shrinking surface. Homotopy analysis method (HAM) is employed for the analytic solution. The similarity transformations have been used for reducing the partial differential equations into a system of two coupled ordinary differential equations. The series solution of the obtained system is developed and convergence of the results are explicitly given. The effects of the parameters M, s and λ on the velocity fields are presented graphically and discussed. It is worth mentioning here that for the shrinking surface the stable and convergent solutions are possible only for MHD flows.  相似文献   

6.
Most theoretical results for thermals, whose motion is determined by the complex interaction between dynamics and buoyancy, have been obtained numerically [1–4]. The analytic solutions for a convection element have been limited to consideration of the self-similar regime [5]. At the same time, the preself-similar stage of development of a vortex ring of dynamic origin has been described analytically [6]. This approach is now extended to a rising vortex ring. In this case a modification of the traditional formulation of the problem makes it possible to obtain an analytic solution of the problem of a weak thermal in the form of unsteady temperature, vorticity and stream function fields that tend in the limit to the self-similar regime. The rate of ascent of the convective vortex ring is found. A solution is obtained for the two-dimensional analog of the problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 42–48, May–June, 1989.  相似文献   

7.
A plane steady problem of a point vortex in a domain filled by a viscous incompressible fluid and bounded by a solid wall is considered. The existence of the solution of Navier-Stokes equations, which describe such a flow, is proved in the case where the vortex circulation Θ and viscosity ν satisfy the condition |Θ| < 2πν. The velocity field of the resultant solution has an infinite Dirichlet integral. It is shown that this solution can be approximated by the solution of the problem of rotation of a disk of radius Γ with an angular velocity ω under the condition 2πγ 2 ω → Γ as γ → 0 and ω→∞.  相似文献   

8.
The results are given of a numerical investigation of the laminar flow of a viscous incompressible fluid with heat transfer from the periphery to the center between two rotating disks. The system is a simplified model of one of the elements of the cooling circuit of a gas turbine. The complete Navier—Stokes equations in the vortlcity—flow function variables were solved by an explicit conservative scheme with appoximation of the convective terms of divergence type by directed differences. The calculations were made in a wide range of variation of the dimensionless determining parameters of the problem. The results agree well with the known experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 76–81, January–February, 1982.We thank V. M. Kapinos for discussion and helpful comments.  相似文献   

9.
The free-surface shape and cusp formation are analyzed by considering a viscous flow arising from the superposition of a source/sink and vortex below the free surface where the strength of the source and vortex are arbitrary. In the analysis, Stokes’ approximation is used and surface tension effects are included, but gravity is neglected. The solution is obtained analytically by using conformal mapping and complex function theory. From the solution, shapes of the free surface are obtained, and the formation of a cusp on the free surface is discussed. Above some critical capillary number with a sink, the free-surface shape becomes singular and an apparent cusp should form on the free surface below a real fluid. On the other hand, no cusp would occur for sources of zero or positive strength. Typical streamline patterns are also shown for some capillary numbers. As the capillary number vanishes, the solution is reduced to a linearized potential flow solution.  相似文献   

10.
We obtain the solution of the Navier-Stokes equations for one class of unsteady axisymmetric two-dimensional rotational flows for the case of a line source or sink of constant intensity in the fluid.  相似文献   

11.
An exact solution of the magnetohydrodynamic equations is constructed which describes steady vortex flow in a stationary cylinder on the axis of which a conductor carrying a known current is located. The solution is obtained under the assumption that the fluid is viscous and has finite electrical conductivity and that the magnetic field has only the axial and azimuthal components in a cylindrical coordinate system. It is found that the action of the Lorentz force is compensated by changing the pressure. Fluid flow occurs from the periphery to the axis of the cylinder under a pressure gradient, with flow rotation and swirling. The fluid flow causes a concentration of the magnetic lines near the axis of the cylinder, providing an exponential decrease in the magnetic field strength with distance from the axis. This flow can be considered as a model of a local increase in the magnetic field strength due to the transfer of its force lines by the flow of the electrically conducting fluid.  相似文献   

12.
The main interest of the present investigation is to generate exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow motion due to a disk rotating with a constant angular speed. For an external uniform magnetic field applied perpendicular to the plane of the disk, the governing equations allow an exact solution to develop taking into account of the rotational non-axisymmetric stationary conducting flow.Making use of the analytic solution, exact formulas for the angular velocity components as well as for the wall shear stresses are extracted. It is proved analytically that for the specific flow the properly defined thicknesses decay as the magnetic field strength increases in magnitude. Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. The temperature field is shown to accord with the dissipation and the Joule heating. According to Fourier's heat law, a constant heat transfer from the disk to the fluid occurs, though decreases for small magnetic fields because of the dominance of Joule heating, it eventually increases for growing magnetic field parameters.  相似文献   

13.
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous fluid flow motion due to a porous disk rotating with a constant angular speed. The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions with suction and injection through the surface included. The well-known thinning/thickening flow field effect of the suction/injection is better understood from the exact velocity equations obtained. Making use of this solution, analytical formulas corresponding to the permeable wall shear stresses are extracted.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. As a result, exact formulas are obtained for the temperature field which take different forms depending on whether suction or injection is imposed on the wall. The impacts of several quantities are investigated on the resulting temperature field. In accordance with the Fourier‘s heat law, a constant heat transfer from the porous disk to the fluid takes place. Although the influence of dissipation varies, suction enhances the heat transfer rate as opposed to the injection.  相似文献   

14.
A study is made of the process of relaxation to the equilibrium configuration of an isolated volume of a viscous incompressible Newtonian fluid under the influence of capillary forces. The fluid has the form of an infinite cylinder of arbitrary shape with a smooth compact and, in general, multiply connected boundary. In the course of relaxation, internal cavities collapse, and the cylinder acquires asymptotically a circular configuration. The quasisteady Stokes approximation [1] is used to describe the flow. First proposed by Frenkel' [2], this approximation has been used in the calculation of a dynamic boundary angle [3], the collapse of a circular cylinder [4], and the collapse of a hollow cylinder [5]. The analogy between the hydrodynamic equations in the Stokes approximation and the equations of elasticity theory made it possible [6] to describe the relaxation of a simply connected cylinder by a method close to the one employed by Muskheleshvili [7]. In the present paper, the approach of the author [8] based on work of Grinberg [9] and Vekua [10] is developed. It is shown that the true pressure distribution gives a minimum of the integral of the square of the pressure over the region for fixed integral of the pressure over the boundary. An explicit expression for the pressure is obtained in the form of the projection of a generalized function with support on the boundary onto the subspace of harmonic functions. The velocity field on the boundary of the region is calculated. An upper bound is found for the law of decrease of the perimeter of the region and for the time during which the number of connected components of the boundary remains unchanged.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 117–122, January–February, 1992.  相似文献   

15.
Viscous fluid flow between rotating cylinders is the best known case in which a secondary steady (equilibrium) flow develops and reaches equilibrium after loss of stability. This flow, consisting of vortices which are periodic along the axis of rotation, the so-called Taylor vortices, is the result of essentially nonlinear interactions in the flow. It arises for sufficiently high rotational velocity of the inner cylinder. The first attempt at theoretical calculation of the flow was undertaken by Stuart [1], in which the form of solution was assumed from linear stability theory and the amplitude was found from the equation expressing the energy balance in integral form. The Stuart solution was improved by Davey [2], who took into account the appearance in the solution of the next harmonic and the distortion of the fundamental mode. Concrete calculations were carried out under the assumption that the vortex dimension equals the distance between the cylinders. The results agree in general with the experimental data. Individual calculations using the method of nets were made in [3], more detailed calculations weie made in [4], and the perturbation method was applied to this problem in [5].In the following, the method of [6, 7] is applied to the study of secondary flow of a viscous fluid between cylinders. The solution is found from a single system of nonlinear differential equations, which are derived, with a definite approximation, from the equations of motion (without account for the special relation for the amplitude).  相似文献   

16.
Summary Fluctuating flow of a viscous fluid rotating over a disk whose angular velocity oscillates about a nonzero mean is investigated. Initially the disk and the fluid rotate in the same sense with different angular velocities 1 and 2 ( 2> 1) and at a particular instant of time, the angular velocity of the disk becomes 1[1+ sin( )]. The problem is solved as an initial boundary value problem and it is found that for small values of the results of analytical and numerical methods are in excellent agreement. The effect of frequency parameter on surface skin frictions has been analysed for various values of angular velocity ratio s and amplitude parameter .
Fluktuierende Strömung in einer rotierenden Flüssigkeit
Übersicht Untersucht wird die fluktuierende Strömung einer viskosen Flüssigkeit, die über einer Scheibe, deren Winkelgeschwindigkeit um einen von Null verschiedenen Mittelwert schwankt, rotiert. Anfangs drehen sich die Scheibe und die Flüssigkeit gleichsinnig, aber mit verschiedenen Winkelgeschwindigkeiten 1 und 2 ( 2> 1). Zu einem Anfangszeitpunkt geht die Winkelgeschwindigkeit der Scheibe über in 1[1+ sin ( )]. Die Aufgabe wird als Anfangs-/Randwertproblem gelöst. Für kleine Werte stimmen die analytischen und numerischen Ergebnisse hervorragend überein. Für verschiedene Werte des Winkelgeschwindigkeitsverhältnisses und des Amplitudenparameters wurde der Einfluß des Frequenzparameters auf die Reibspannungen an der Scheibe untersucht.
  相似文献   

17.
A vortex ventilation system with a rotating annular disk installed coaxially with the exhaust inlet is a very effective local ventilator. A swirling flow generated by a rotating swirler makes the ventilation flow concentrated around the axis of rotation, which can increase the ventilation depth by a factor of five compared to a conventional exhaust hood. Despite the well-documented excellent ventilation performance of such a system, detailed flow characteristics are not well understood. In this study, the swirling flow field in the vortex vent was tested, and a number of peculiar flow characteristics were observed. When the rotational speed was varied, a series of different flow patterns appeared, and the changes in the flow pattern showed rapid transition, hysteresis, and flow instability similar to the vortex. The transition of the flow pattern could be explained based on the ratio of the centrifugal force to exhaust pressure. Hysteresis of the flow transition occurred in an unstable equilibrium mode between the two forces, and an unstable flow pattern occurred when the secondary recirculating flow was located beneath the swirler. A formula for the critical rotational speed was derived, which showed satisfactory agreement with experimental observation.  相似文献   

18.
The effects of viscosity on the propagation of a St. Andrew's cross wave which is generated by a simple-harmonic localized disturbance in a rotating stratified fluid are considered. A similarity solution of the linearised equations shows that the velocities decay and that the wave width increases away from the disturbance. Previous solutions in a stratified non-rotating fluid are recovered by letting the rotation tend to zero. The solutions are also valid in the limit of a homogeneous rotating fluid. Further solutions for waves in a realistic ocean and in an isothermal atmosphere on a rotating Earth are also included.  相似文献   

19.
The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dependent fluid viscosity are considered: water, dielectric fluid HFE-7600 and isopropanol. The square shape of the cross-section is considered with D h  = 50 μm with a channel length L = 50 mm. As most of the reported researches dealt with fully developed fluid flow and constant fluid properties in this paper the thermal and hydro-dynamic developing laminar fluid flow is analyzed. Two different heat transfer conditions are considered: heating and cooling at various Br. The influence of the viscous heating on local Nu and Po is analyzed. It was shown that for a given geometry the local Po and Nu numbers are strongly affected by the viscous heating. Moreover the Po number attains the fully developed value as the external heating is equal with the internal viscous heating.  相似文献   

20.
It is found that the radial geometry does not stabilize the evolution of instability in the displacement of a more viscous fluid by a less viscous fluid from a circular Hele-Shaw cell with a sink. A linear analysis shows the absolute instability of the radial displacement front. The appearance of isolated fingers is observed during numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号