首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroscopic characterization of neutral highly-coordinated compounds is essential in fundamental and applied research, but has been proven to be a challenging experimental target because of the difficulty in mass selection. Here, we report the preparation and size-specific infrared-vacuum ultraviolet (IR-VUV) spectroscopic identification of group-3 transition metal carbonyls Sc(CO)7 and TM(CO)8 (TM=Y, La) in the gas phase, which are the first confinement-free neutral heptacarbonyl and octacarbonyl complexes. The results indicate that Sc(CO)7 has a C2v structure and TM(CO)8 (TM=Y, La) have a D4h structure. Theoretical calculations predict that the formation of Sc(CO)7 and TM(CO)8 (TM=Y, La) is both thermodynamically exothermic and kinetically facile in the gas phase. These highly-coordinated carbonyls are 17-electron complexes when only those valence electrons that occupy metal−CO bonding orbitals are considered, in which the ligand-only 4b1u molecular orbital is ignored. This work opens new avenues toward the design and chemical control of a large variety of compounds with unique structures and properties.  相似文献   

2.
The title compounds with terminal N‐heterocyclic carbenes, namely octacarbonyl(imidazolidinylidene‐κC2)di‐μ3‐sulfido‐triiron(II)(2 FeFe), [Fe3(C3H6N2)(μ3‐S)2(CO)8], (I), and octacarbonyl(1‐methylimidazo[1,5‐a]pyridin‐3‐ylidene‐κC3)di‐μ3‐sulfido‐triiron(II)(2 FeFe), [Fe3(C8H8N2)(μ3‐S)2(CO)8], (II), have been synthesized. Each compound contains two Fe—Fe bonds and two S atoms above and below a triiron triangle. One of the eight carbonyl ligands deviates significantly from linearity. In (I), dimers generated by an N—H...S hydrogen bond are linked into [001] double chains by a second N—H...S hydrogen bond. These chains are packed by a C—H...O hydrogen bond to yield [101] sheets. In (II), dimers generated by an N—H...S hydrogen bond are linked by C—H...O hydrogen bonds to form [111] double chains.  相似文献   

3.
We report the gas‐phase synthesis of stable 20‐electron carbonyl anion complexes of group 3 transition metals, TM(CO)8? (TM=Sc, Y, La), which are studied by mass‐selected infrared (IR) photodissociation spectroscopy. The experimentally observed species, which are the first octacarbonyl anionic complexes of a TM, are identified by comparison of the measured and calculated IR spectra. Quantum chemical calculations show that the molecules have a cubic (Oh) equilibrium geometry and a singlet (1A1g) electronic ground state. The 20‐electron systems TM(CO)8? are energetically stable toward loss of one CO ligand, yielding the 18‐electron complexes TM(CO)7? in the 1A1 electronic ground state; these exhibit a capped octahedral structure with C3v symmetry. Analysis of the electronic structure of TM(CO)8? reveals that there is one occupied valence molecular orbital with a2u symmetry, which is formed only by ligand orbitals without a contribution from the metal atomic orbitals. The adducts of TM(CO)8? fulfill the 18‐electron rule when only those valence electrons that occupy metal–ligand bonding orbitals are considered.  相似文献   

4.
We report the gas‐phase synthesis of stable 20‐electron carbonyl anion complexes of group 3 transition metals, TM(CO)8 (TM=Sc, Y, La), which are studied by mass‐selected infrared (IR) photodissociation spectroscopy. The experimentally observed species, which are the first octacarbonyl anionic complexes of a TM, are identified by comparison of the measured and calculated IR spectra. Quantum chemical calculations show that the molecules have a cubic (Oh) equilibrium geometry and a singlet (1A1g) electronic ground state. The 20‐electron systems TM(CO)8 are energetically stable toward loss of one CO ligand, yielding the 18‐electron complexes TM(CO)7 in the 1A1 electronic ground state; these exhibit a capped octahedral structure with C3v symmetry. Analysis of the electronic structure of TM(CO)8 reveals that there is one occupied valence molecular orbital with a2u symmetry, which is formed only by ligand orbitals without a contribution from the metal atomic orbitals. The adducts of TM(CO)8 fulfill the 18‐electron rule when only those valence electrons that occupy metal–ligand bonding orbitals are considered.  相似文献   

5.
Reaction of primary thioamides with dicobalt octacarbonyl affords in good yield the first diamagnetic monomeric trinuclear cobalt carbonyl sulfur complexes SCO3(CO)7(μ-R1?NR2), which contain a bridging bidentate imino ligand. The structure of the product with R1  Me, R2  C6H11 has been determined by X-ray diffraction, and shown to include a very short cobaltcobalt bond distance and a long cobaltsulfur bond distance when compared to other cobaltsulfur clusters.  相似文献   

6.
Ethanolic solutions of (RhI(CO)2Cl)2 and aqueous solutions of (RhIICH3COO)2)2 have been investigated by pulse radiolysis under CO or N2 atmosphere. In the first case the reduction of the RhI complex is shown to proceed via CO- formation. In the second case, several steps have been evidenced, one of them extremely fast, indicating an exceptional reactivity of such a binuclear rhodium structure towards the electron. Spectra of transient species at different times are presented. A species absorbing at 520 nm, already present at 10 ns, is assigned to a RhIRhII complex resulting itself from a reaction of the initial salt with pre-solvated electrons. A mechanism is proposed to account for the decay kinetics of e-aq and the spectral changes. The rate constants are evaluated for each of the five steps occuring within the first microsecond.  相似文献   

7.
Homoleptic Group 4 metal carbonyl cation and neutral complexes were prepared in the gas phase and/or in solid neon matrix. Infrared spectroscopy studies reveal that both zirconium and hafnium form eight-coordinate carbonyl neutral and cation complexes. In contrast, titanium forms only the six-coordinate Ti(CO)6+ and seven-coordinate Ti(CO)7. Titanium octacarbonyl Ti(CO)8 is unstable as a result of steric repulsion between the CO ligands. The 20-electron Zr(CO)8 and Hf(CO)8 complexes represent the first experimentally observed homoleptic octacarbonyl neutral complexes of transition metals. The molecules still fulfill the 18-electron rule, because one doubly occupied valence orbital does not mix with any of the metal valence atomic orbitals. Zr(CO)8 and Hf(CO)8 are stable against the loss of one CO because the CO ligands encounter less steric repulsion than Zr(CO)7 and Hf(CO)7. The heptacarbonyl complexes have shorter metal−CO bonds than that of the octacarbonyl complexes due to stronger electrostatic and covalent bonding, but the significantly smaller repulsive Pauli term makes the octacarbonyl complexes stable.  相似文献   

8.
《Polyhedron》1987,6(6):1351-1360
Interaction of trans-VCl2(dmpe)2 with sodium amalgam in tetrahydrofuran under CO gives trans-V(CO)2(dmpe)2. The latter is oxidized by Ag+ in acetonitrile to give [cis-V(CO)2(dmpe)2(CH3CN)]+, isolated as the tetraphenylborate. Interactions with acids (HX) gives neutral complexes of the type V(CO)2(dmpe)2X (X = Cl, MeCO2, EtCO2, CF3CO2, PhPO2H or NH2SO3); the chloride can be exchanged with N3 or CN in methanol. X-ray structural studies confirm the trans stereochemistry for V(CO)2(dmpe)2 and the seven-coordination of VI in both [V(CO)2(dmpe)2(CH3CN)][BPh4] and V(CO)2(dmpe)2(O2CEt), which have a pseudo octahedral geometry with the two carbonyls occupying a “split” axial site. 51V NMR and other spectra are reported.  相似文献   

9.
The complexes M(CO)2(PPh3)3 (I, M = Fe; II, M = Ru) readily react with H2 at room temperature and atmospheric pressure to give cis-M(H)2(CO)2(PPh3)2 (III, M = Fe;IV,M = Ru). I reacts with O2 to give an unstable compound in solution, in a type of reaction known to occur with II which leads to cis-Ru(O2)(CO)2(PPh3)2(V). Even compound IV reacts with O2 to give V with displacement of H2; this reaction has been shown to be reversible and this is the first case where the displacement of H2 by O2 and that of O2 by H2 at a metal center has been observed. III and IV are reduced to M(CO)3(PPh3)2 by CO with displacement of H2; Ru(CO)3- (PPh3)2 is also formed by treatment of IV with CO2, but under higher pressure. Compounds II and IV react with CH2CHCN to give Ru(CH2CHCN)(CO)2- (PPh3)2(VI) which reacts with H2 to reform the hydride IV.cis-Ru(H)2(CO)2(PPh3)2(IV) has been studied as catalyst in the hydrogenation and isomerization of a series of monoenes and dienes. The catalysts are poisoned by the presence of free triphenylphosphine. On the other hand the ready exchange of H2 and O2 on the “Ru(CO)2(PPh3)2” moiety makes IV a catalyst not irreversibly poisoned by the presence of air. It has been found that even Ru(CO)2(PPh3)3(II) acts as a catalyst for the isomerization of hex-1-ene at room temperature under an inert atmosphere.  相似文献   

10.
The kinetics of the reaction of tetracobalt dodecacarbonyl with carbon monoxide to form dicobalt octacarbonyl in n-hexane have been investigated over a wide range of temperature and CO pressure. The reaction is first order in [Co4(CO)12]; the order in [CO] changes between one (at low pressures and high temperatures) and two (at high pressures and low temperatures).Activation parameters have been estimated and a mechanism involving initial reversible breaking of one CoCo bond, followed by irreversible breaking of a second, is proposed. The first step involves concerted addition of CO while the second can proceed with or without such addition.  相似文献   

11.
Complete geometry optimizations were carried out by HF and DFT methods to study the molecular structure of binuclear transition-metal compounds (Cp(CO)3W(μ-PPh2)W(CO)5) (I) and (Cp(CO)2W(μ-PPh2)W(CO)5) (II). A comparison of the experimental data and calculated structural parameters demonstrates that the most accurate geometry parameters are predicted by the MPW1PW91/LANL2DZ among the three DFT methods. Topological properties of molecular charge distributions were analyzed with the theory of atoms in molecules. (3, −1) critical points, namely bond critical point, were found between the two tungsten atoms, and between W1 and C10 in complex II, which confirms the existence of the metal–metal bond and a semi-bridging CO between the two tungsten atoms. The result provided a theoretical guidance of detailed study on the binuclear phosphido-bridged complex containing transition metal–metal bond, which could be useful in the further study of the heterobimetallic phosphido-bridged complexes.  相似文献   

12.
The kinetics of oxidation of the dipeptide glycylglycine by peroxomonosulfate (PMS) was studied in the pH range of 3.42–5.89. The rate is first order in [PMS], glycylglycine concentration, and inverse first order in [H+]. The kinetic data suggest that SO2?5reacts, with glycylglycine, faster than HSO?5 by five orders of magnitude. The observed kinetics can be explained as due to the formation of an intermediate by the nucleophilic interaction of peroxide with the terminal protonated amine of glycylglycine, which then decomposes in the rate‐limiting step to the product aldehyde. The thermodynamic parameters are evaluated. The reaction is catalyzed by Ni(II) ions only when pH ? 4.63, and above this pH the rate is zero order with respect to [Ni(II)]. Perusal of the enhanced rate constant values suggests that the Ni‐peroxide intermediate also reacts with glycylglycine. The Ni‐dipeptide complex is not oxidized by PMS, and this complex in fact inhibits the formation of Ni‐peroxide intermediate. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 18–26, 2009  相似文献   

13.
In the presence of organosilanes, dicobalt octacarbonyl catalyzes the polymerization of alkyl allyl ethers to give high molecular weight polymers. This article reports the results of a detailed mechanistic study of this new polymerization reaction. The evidence obtained in this study supports a stepwise process involving first, the reaction of dicobalt octacarbonyl with an organosilane to form HCo(CO)4 and R3SiCo(CO)4. In subsequent steps, HCo(CO)4 isomerizes the allyl ether to a 1-propenyl ether and then this compound is polymerized by the formal transfer of a silyl cation from R3SiCo(CO)4. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1985–1997, 1997  相似文献   

14.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

15.
Treatment of [Cu(pcho)2(NCMe)][BF4] 1 (pcho = 2‐(diphenylphosphino)benzaldehyde) with aqueous H2O2 in THF solvent affords [Cu2(dpb)2(THF)2(H2O)2] [BF4]2 2 (dpb = 2‐(diphenylphosphinoxide)‐benzoate) after crystallization from diethyl ether. This reaction involves oxidation of Cu(I) to Cu(II) ion, phosphine to phosphinoxide, and benzaldehyde to benzoate species. The crystal structure of 2 consists of two copper(II) atoms bridged by two carboxylate moieties of the dpb ligands. The coordination about each copper(II) atom is a distorted trigonal bipyramid.  相似文献   

16.
Thermal substitution reaction of Cr(CO)42:2-1,5-cyclooctadiene), Mo(CO)42:2-norbornadiene), and W(CO)52-bis(trimethylsilyl)ethyne) with N,N′-bis(ferrocenylmethylene)ethylenediamine (bfeda) yields M(CO)4(bfeda) complexes which could be isolated from the reaction solution and characterized by elemental analysis, MS, IR, and NMR spectroscopy. In the case of tungsten, W(CO)5(bfeda) is formed as intermediate and then undergoes the ring closure reaction yielding the ultimate product W(CO)4(bfeda). The electrochemical behavior of the M(CO)4(bfeda) complexes was studied by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in dichloromethane with tetrabutylammonium tetrafluoroborate as electrolyte. Constant potential electrolysis of the complexes was performed successively at their peak potentials at 0 °C in their CH2Cl2 solution and the electrolysis was followed by in situ recording the electronic absorption spectra in every 5 mC. In the electrolysis of Cr(CO)4(bfeda), the central Cr(0) is oxidized first and electrolysis continues with oxidations of two ferrocenyl groups until the end of totally three moles of electron passage per mole of complex. In the electrolysis of Mo(CO)4(bfeda) and W(CO)4(bfeda) the first oxidation occurs on the central atom forming a short-lived species which undergoes an intramolecular one-electron transfer and is reduced back to M(0) while one of the ferrocene units is oxidized to the ferrocenium cation at the same time. This indicates that the electron is transferred from iron to the central metal atom.  相似文献   

17.
The disproportionation of dicobalt octacarbonyl induced by the free carbene 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) and the X-ray characterization of the cyclohexane solvate of the resulting cobalt carbonyl N-heterocyclic carbene salt, [Co(CO)3(IMes)2]+[Co(CO)4]-.1/4C6H12, is reported. The crystal structure represents the first example of a [Co(CO)3(L)2][Co(CO)4] disproportionate salt reported to date.  相似文献   

18.
The reaction of H2Os3(CO)10 with CF3CN in hexane at 80°C leads to two isomeric products. The isomer constituting the major product contains a 1,1,1-tri-fluoroethylidenimido ligand which bridges one edge of the Os3 triangle via the nitrogen, atom and may be formulated as (μ-H)Os3(CO)10(μ-NC(H)CF3) (I). The minor product, formulated as (μ-H)Os3(CO)10(μ-η2-HNCCF3) (II), contains a 1,1,1-trifluoroacetimidoyl ligand which is also edge-bridging, being N-bonded to one Os atom and C-bonded to the other. Thermolysis of I and II in solution results in loss of a CO group in each case to give (μ-H)Os3(CO)9?32-NC(H)CF3) (III) and (μ-H)Os3(CO)932-HNCCF3) (IV), respectively, which, it is proposed, are structurally related to I and II, but with the CN group coordinated also to the third Os atom in place of a CO group. In the case of IV this proposal has been confirmed by an X-ray crystallographic analysis. The compound crystallises in space group C2/c with a = 14.258(7), b = 13.486(10), c = 18.193(8) Å, β = 92.68(4)°, and Z = 8. The structure was solved by a combination of direct methods and Fourier difference techniques, and refined by full-matrix least squares to R = 0.054 for 2489 unique observed diffractometer data. Reaction of I with Et3P gives a 1 : 2 adduct which is formulated as (μ-H)Os3(CO)10[μ-N?C(H)(CF3)PEt3] (V) on the basis of NMR evidence.  相似文献   

19.
The reaction of PhCN with Ru3 (CO)12 in the presence of acetic acid gives H4Ru4(CO)12, (I), (μ-H)Ru3(CO)10(μ-NCHPh) (II) and (μ-H)Ru3(CO)10(μ-NH-CH2Ph) (III) as the main products. Reaction under 110 atm of H2 gives more III and also gives benzylamine. Replacement of acetic acid by H2 at atmospheric pressure gives only II. When H4Ru4CO)12 reacts with PhCN alone or in the presence of NaOH, II is formed as the only product.The structures of II and III have been fully elucidated by X-ray methods. The nitrogen atom of the NCHPh ligand in II and that of the NHCH2Ph ligand in III, interact with the isosceles-triangular metal cluster, symmetrically bridging the shortest Ru(1)-Ru(2) edge. A hydride ligand in both II and III bridges the same Ru(1)-Ru(2) edge of the cluster. Under mild conditions acetic acid is an essential requirement for the activation of Ru3(CO)12 for reaction with PhCN to give III, which cannot be obtained under these conditions from II.  相似文献   

20.
The heteronuclear Cp2Nb(CO)(μ-CO)Mn(CO)4 (I), Cp2Nb(CO)(μ-H)Ni(CO)3 (II) and [Cp2Nb(CO)(μ-H)]2M(CO)4 (III, M = Mo;IV, M = W) complexes were prepared by reaction of Cp2NbBH4/Et3N with Mn2(CO)10 in refluxing toluene, direct reaction of Cp2NbBH4 with Ni(CO)4 in ether, and reaction of Cp2NbBH4/Et3N with M(CO)5. THF complexes (M = Mo or W) in THF/benzene mixture. An X-ray investigation of compounds I–III was performed. It is established that in I the bonding between Mn(CO)5 and Cp2Nb(CO) (with the angle (α) between the ring planes being 44.2(5)°) fragments takes place via a direct NbMn bond (3.176(1) Å) and a highly asymmetric carbonyl bridge (MnCco 1.837(5) Å, NbCco 2.781(5) Å). On the other hand, in complex II the sandwich Cp2Nb(CO)H molecule (angle α = 37.8°) is combined with the Ni(CO)3 group generally via a hydride bridge (NbH 1.83 Å, NiH 1.68 Å, NbHNi angle 132.7°) whereas the large Nb?Ni distance, 3.218(1) Å, shows the weakening or even absence of the direct NbNi bond. Similarly, in complex III two Cp2Nb(CO)H molecules (with α angles equal to 41.4 and 43.0°, respectively) are joined to the Mo(CO)4 group via the hydride bridges (NbH 1.83 and 1.75 Å and MoH 2.04 and 2.06 Å) producing a cis-form. The direct NbMo bonds are probably absent, since the Nb?Mo distances are rather long (3.579 and 3.565 Å). The effect of electronic and steric factors on the structure of heteronuclear niobocene carbonyl derivatives is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号