首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of dibenzo-18-crown-6-ether (DB18C6) and its hydrated clusters has been investigated in a supersonic jet. Two conformers of bare DB18C6 and six hydrated clusters (DB18C6-(H(2)O)(n)) were identified by laser-induced fluorescence, fluorescence-detected UV-UV hole-burning and IR-UV double-resonance spectroscopy. The IR-UV double resonance spectra were compared with the IR spectra obtained by quantum chemical calculations at the B3LYP/6-31+G* level. The two conformers of bare DB18C6 are assigned to "boat" and "chair I" forms, respectively, among which the boat form is dominant. All the six DB18C6-(H(2)O)(n) clusters with n = 1-4 have a boat conformation in the DB18C6 part. The water molecules form a variety of hydration networks in the boat-DB18C6 cavity. In DB18C6-(H(2)O)(1), a water molecule forms the bidentate hydrogen bond with the O atoms adjacent to the benzene rings. In this cluster, the water molecule is preferentially hydrogen bonded from the bottom of boat-DB18C6. In the larger clusters, the hydration networks are developed on the basis of the DB18C6-(H(2)O)(1) cluster.  相似文献   

2.
Complexes of dibenzo-18-crown-6 (DB18C6, host) with water, ammonia, methanol, and acetylene (guest) in supersonic jets have been characterized by laser induced fluorescence (LIF), UV-UV hole-burning (UV-UV HB), and IR-UV double resonance (IR-UV DR) spectroscopy. Firstly, we reinvestigated the conformation of bare DB18C6 (species m1 and m2) and the structure of DB18C6-H(2)O (species a) [R. Kusaka, Y. Inokuchi, T. Ebata, Phys. Chem. Chem. Phys., 2008, 10, 6238] by measuring IR-UV DR spectra in the region of the methylene CH stretching vibrations. The IR spectral feature of the methylene CH stretch of DB18C6-H(2)O is clearly different from those of bare DB18C6 conformers, suggesting that DB18C6 changes its conformation when forming a complex with a water molecule. With the aid of Monte Carlo simulation for extensive conformational search and density functional calculations (M05-2X/6-31+G*), we reassigned species m1 and m2 to conformers having C(1) and C(2) symmetry, respectively. Also, we confirmed the DB18C6 part in species a of DB18C6-H(2)O to be "boat" conformation (C(2v)). Secondly, we identified nine, one, and two species for the DB18C6 complexes with ammonia, methanol, and acetylene, respectively, by the combination of LIF and UV-UV HB spectroscopy. From the IR spectroscopic measurement in the methylene CH stretching region, a similar conformational change was identified in the DB18C6-ammonia complexes, but not in the complexes with methanol or acetylene. The structures of all the complexes were determined by analyzing the electronic transition energies, exciton splitting, and IR spectra in the region of the OH, NH, and CH stretching vibrations. In DB18C6-ammonia complexes, an ammonia molecule is incorporated into the cavity of the boat conformation by forming "bifurcated" and "bidentate" hydrogen-bond (H-bond), similar to the case of the DB18C6-H(2)O complex. On the other hand, in the DB18C6-methanol and -acetylene complexes, methanol and acetylene molecules are simply attached to the C(1) and C(2) conformations, respectively. From the difference of the DB18C6 conformations depending on the type of the guest molecules, it is concluded that DB18C6 distinguishes water and ammonia from methanol and acetylene when it forms complexes, depending on whether guest molecules have an ability to form bidentate H-bonding.  相似文献   

3.
The coextraction of water with benzo-15-crown-5 (B1SC5), benzo-18-crown-6 (B18C6) and the B18C6-K+ complex into seven low-polar solvents, i.e., carbon tetrachloride (CTC), chloroform (CF), dichloromethane (DCM), 1,2-dichloroethane (1,2-DCE), benzene (BZ), chlorobenzene (CB) and o-dichlorobenzene (o-DCB), has been investigated. The mean hydration number, nH2O, of these solutes in the water-saturated organic solvents was determined. There is a trend that the nH2O values for any solutes increase with increasing the water concentration in the solvents. Those of B18C6 and B15C5 converge at almost 0.8 for B18C6 and 0.4 - 0.5 for B15C5 in the solvents with the relatively high water concentration, i.e., CF, 1,2-DCE, DCM, and nitorobenzene (NB). The nH2O value of B15C5 is about one-half of that of B18C6 for a given organic solvent. The dominant species of the B18C6-K+ complex in these solvents is non-hydrated. From these results, the hydration equilibrium constants, KH2O, in the organic solvents were estimated.  相似文献   

4.
A new compound, aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(perchlorato-O)potassium perchlorate ([K(DB18C6)(H2O)]+ · [K(ClO4)(DB18C6)] · ClO 4 ? ; compound I) is synthesized and studied by X-ray crystallography. The crystals are triclinic: a = 9.050 Å, b = 9.848 Å, c = 26.484 Å, α = 82.87°, β = 84.16°, γ = 77.93°, Z = 2, space group P $\bar 1$ . The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.058 for 5960 independent reflections (CAD4 diffractometer, λMoK α radiation). A complex cation [K(DB18C6)(H2O)]+ and a complex molecule [K(ClO4)(DB18C6)] are of the host-guest type; they are linked into a dimer through two K+ → π(C) bonds formed by one of the two K+ cations with two C atoms of the benzene ring of the DB18C6 ligand from the adjacent complex. Both DB18C6 ligands in I have a butterfly conformation with approximate symmetry C 2v .  相似文献   

5.
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.  相似文献   

6.
Experimental (IR and Raman) and theoretical (Kohn-Sham calculations) methods are used in a combined analysis aimed at refining the available structural data concerning the molecular guests in channels formed by stacked dibenzo-18-crown-6 (DB18C6) crown ether. The calculations are performed for a simplified model comprising isolated DB18C6 unit and its complexes with either H2O or H3O+ guests, which are the simplest model ingredients of a one-dimensional diluted acid chain, to get structural and energetic data concerning the formation of the complex and to assign the characteristic spectroscopic bands. The oxygen centers in the previously reported crystallographic structure are assigned to either H2O or protonated species.  相似文献   

7.
New mixed complex compound aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(tetrachlorocuprato(II)-Cl)potassium, [K(CuCl4)(Db18C6)]? · [K(Db18C6)(H2O)]+, is synthesized and its crystal structure is studied by the method of x-ray structural analysis. The structure includes two independent complex ions, both of guest-host type: two cations K+ are located in the respective cavities of the Db18C6 crown-ligand (one in each) and each is coordinated by all its six O atoms and one Cl atom of the anion-ligand [CuCl4]2? or O atom of the ligand water molecule. Coordination of these two K+ cations is completed to hexagonal pyramidal one by formation by each of unusually weak coordination bond K+π(\(C\dddot - C\)) with two C atoms of respective benzene ring in the neighboring Db18C6 ligand. In this crystal structure the complex anions and cations form dual infinite chains via these coordination bonds and interionic O-H?Cl hydrogen bonds.  相似文献   

8.
1INrnODUCTIoNlnthepreviouspapers,wehavereportedthesynthesisandcrystalstructureofseveralcrownetherpolyoxometalates"-",nowwestudythestructureofthetitlecomplexandcompareitwithsomeothercrownetherpolyoxometalatecomplexes.2EXPERmENTALToal5OmLaqueoussolutioncontaining32g(1OOmol)Na,WO#.2H,Opre-justedtopH=3.5withchloricacid,14g(4Ommol)(n-Bu)'NBrwasadded,thenwhitepowderwasformed.ThewhiteprecipitateobtainedwithafiltrationwaskeptasthenewmaterialAinnextstep.AmixtureoflgAandO.3g(O.8mmol)DB18…  相似文献   

9.
Homolytic alkylation of protonated quinoxaline with 18-crown-6, initiated by the system pivalic acid-iron(II) sulfate at 20–25C, gives (quinoxalin-2-yl)-18-crown-6 in 85% yield. Under analogous conditions, the reaction with quinoline affords two isomers: (quinolin-4-yl)-18-crown-6 and (quinolin-2-yl)-18-crown-6, in yields of 20 and 30% respectively.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 75–76, January, 1988.  相似文献   

10.
Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkaline earth metal divalent cations (A(2+)-DB18C6, A = Ba, Sr, Ca, and Mg) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. Each spectrum exhibits the lowest energy absorption band in the wavenumber region of 35?400-37?800 cm(-1), which is tentatively assigned as the origin of the S(0)-S(1) transition of A(2+)-DB18C6. This origin band shows a red shift as the size of the metal dication increases from Mg(2+) to Ba(2+). The binding energies of the metal dications to DB18C6 at the S(0) state were calculated at the lowest energy structures optimized by the density functional theory and employed with the experimental energies of the origin bands to estimate the binding energies at the S(1) state. We suggest that the red shifts of the origin bands arise from the decrease in the binding energies of the metal dications at the S(1) state by nearly constant ratios with respect to the binding energies at the S(0) state, which decrease with increasing size of the metal dication. This unique relationship of the binding energies between the S(0) and S(1) states gives rise to a linear correlation between the relative shift of the origin band of A(2+)-DB18C6 and the binding energy of the metal dication at the S(0) state. The size effects of the metal cations on the properties of metal-DB18C6 complex ions are also manifested in the linear plot of the relative shift of the origin band as a function of the size to charge ratio of the metal cations, where the shifts of the origin bands for all DB18C6 complexes with alkali and alkaline earth metal cations are fit to the same line.  相似文献   

11.
The La(2+) complex [K(18-crown-6)(OEt(2))][Cp″(3)La] (1) [Cp″ = C(5)H(3)(SiMe(3))(2)-1,3], can be synthesized under N(2), but in the presence of KC(5)Me(5), 1 reduces N(2) to the (N═N)(2-) product [(C(5)Me(5))(2)(THF)La](2)(μ-η(2):η(2)-N(2)). This suggests a dichotomy in terms of ligands that optimize isolation of reduced dinitrogen complexes versus isolation of divalent complexes of the rare earths. To determine whether the first crystalline molecular Y(2+) complex could be isolated using this logic, Cp'(3)Y (2) (Cp' = C(5)H(4)SiMe(3)) was synthesized from YCl(3) and KCp' and reduced with KC(8) in the presence of 18-crown-6 in Et(2)O at -45 °C under argon. EPR evidence was consistent with Y(2+) and crystallization provided the first structurally characterizable molecular Y(2+) complex, dark-maroon-purple [(18-crown-6)K][Cp'(3)Y] (3).  相似文献   

12.
Treatment of 3,5-diisopropyltriazole, 3,5-diphenyltriazole, 3,5-di-3-pyridyltriazole, phenyltetrazole, pyrrolidinyltetrazole, or tert-butyltetrazole with equimolar quantities of potassium hydride and 18-crown-6 in tetrahydrofuran at ambient temperature led to slow hydrogen evolution and formation of (3,5-diisopropyl-1,2,4-triazolato)(18-crown-6)potassium (88%), (3,5-diphenyl-1,2,4-triazolato)(tetrahydrofuran)(18-crown-6)potassium (87%), (3,5-di-3-pyridyl-1,2,4-triazolato)(18-crown-6)potassium (81%), (phenyltetrazolato)(18-crown-6)potassium (94%), (pyrrolidinyltetrazolato)(18-crown-6)potassium (90%), and (tert-butyltetrazolato)(18-crown-6)potassium (94%) as colorless crystalline solids. (1,2,4-Triazolato)(18-crown-6)potassium was isolated as a hemi-hydrate in 81% yield upon treatment of 1,2,4-triazole with potassium metal in tetrahydrofuran. The X-ray crystal structures of these new complexes were determined, and the solid-state structures consist of the nitrogen heterocycles bonded to the (18-crown-6)potassium cationic fragments with eta2-bonding interactions. In addition, (3,5-diphenyl-1,2,4-triazolato)(tetrahydrofuran)(18-crown-6)potassium has one coordinated tetrahydrofuran ligand on the same face as the 3,5-diphenyl-1,2,4-triazolato ligand, while (3,5-di-3-pyridyl-1,2,4-triazolato)(18-crown-6)potassium forms a polymeric solid through coordination of the distal 3-pyridyl nitrogen atoms to the potassium ion on the face opposite the 1,2,4-triazolato ligand. The solid-state structures of the new complexes show variable asymmetry in the potassium-nitrogen distances within the eta2-interactions and also show variable bending of the heterocyclic C2N3 and CN4 cores toward the best plane of the 18-crown-6 ligand oxygen atoms. Molecular orbital and natural bond order calculations were carried out at the B3LYP/6-311G(d,p) level of theory on the model complex, (phenyltetrazolato)(18-crown-6)potassium, and demonstrate that the asymmetric potassium-nitrogen distances and bending of the CN4 core toward the 18-crown-6 ligand are due to hydrogen bond-like interactions between filled nitrogen-based orbitals and carbon-hydrogen sigma orbitals on the 18-crown-6 ligands. Calculations carried out on the model pentazolato complex (pentazolato)(18-crown-6)potassium predict a structure in which the pentazolato ligand N5 core is bent by 45 degrees toward the best plane of the 18-crown-6 oxygen atoms. Such bending is induced by the formation of intramolecular nitrogen-hydrogen-carbon hydrogen bonds. Examination of the solid-state structures of the new complexes reveals many intramolecular and intermolecular nitrogen-hydrogen distances of < or =3.0 A which support the presence of nitrogen-hydrogen-carbon hydrogen bonds.  相似文献   

13.
A new compound, dibenzo-18-crown-6 diaqua(dibenzo-18-crown-6)potassium triiodide [K(Db18C6)(H2O)2)+ · I3 · Db18C6 (I), is synthesized and studied by X-ray crystallography. The crystals of compound I are orthorhombic: a = 22.065 ?, b = 22.140 ?, c = 9.433 ?, Z = 4, space group Pccn. Structure I is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.098 for all 5974 unique reflections. Structure I contains the following asymmetric units: a half of the I3 centrosymmetric anion and two halves of the mixed equally average [K(Db18C6)(H2O)2]+ host—guest complex cation (a) and a free Db18C6 molecule, each stacked on the axes 2 of the perpendicularly averaged plane of the eighteen-membered macroheterocycle. In complex I, both Db18C6 molecules (a and b) have a “butterfly” conformation with approximate symmetry C 2v . Original Russian Text ? A.N. Chekhlov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 516–520.  相似文献   

14.
Two complexes are synthesized: diaquabromo(18-crown-6)rubidium [RbBr(18-crown-6)(H2O)2] (I) and triaqua(18-crown-6)barium dibromide monohydrate [Ba(18-crown-6)(H2O)3]2+ 2Br? · H2O (II). The orthorhombic structure of compound I (space group Pnma, a = 10.124 Å, b = 15.205 Å, c = 12.544 Å, Z = 4) and the monoclinic structure of compound II (space group C 2/c, a = 17.910 Å, b = 10.315 Å, c = 14.879 Å, β = 123.23°, Z = 4) are determined by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.063 (I) and 0.042 (II) for all 2293 (I) and 3363 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). The complex molecule [RbBr(18-crown-6)(H2O)2] in compound I and the randomly disordered cation [Ba(18-crown-6)(H2O)3]2+ in compound II are of the host-guest type: their Rb+ or Ba2+ cation (its coordination number is nine) is located in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In structure I, the coordination polyhedron of Rb+ is a distorted hexagonal pyramid with a triple apex at the Br? ligand and two O atoms of the water molecules. In structure II, the Ba2+ polyhedron is a distorted hexagonal bipyramid with one apex at the O atom of the water molecule and the other split apex at two O atoms of water molecules.  相似文献   

15.
A new host-guest complex (dibenzo-18-crown-6)bis(thiocyanato-S)mercury(II), [Hg(SCN)2(DB18C6], was synthesized and studied by X-ray diffraction method. The crystal structure (space group P21/n, a = 19.372, b = 8.199, c = 31.799 Å, β = 103.58°, Z = 8) was solved by the direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.092 for 6392 independent reflections; CAD-4 autodiffractometer, λMoK α. In two independent similar complex molecules, the Hg2+ cation lies in the cavity of the DB18C6 crown ligand and is coordinated by all the six O atoms and is covalently bonded to two S atoms of the SCN? ligands lying on the opposite sides of the mean plane of the six O atoms of the DB18C6 ligand. The coordination polyhedron of two independent Hg atoms is a distorted hexagonal bipyramid. Both independent DB18C6 ligands have the “butterfly” conformation with the approximate C 2v symmetry.  相似文献   

16.
The hydration of the potassium complexes of dibenzo-18-crown-6, dibenzo-3,12-dibutyl-18-crown-6, and dibenzo-3,12-dioctyl-18-crown-6 has been investigated by the Monte Carlo method. The calculated values of the energies of interaction of water-cation of the metal complex, water -crown ether, and crown ether-cation are pesented. The results of the calculations show that the investigated potassium complexes of the dialkylsubstituted DB18C6 interact with the aqueous phase much more strongly than the potassium complex of DB18C6. This can lead to the additional structurization of the hydrate shell and, as a result of this, to a decrease in S0 of complex formation and in the stability of the complexes with the increasing number of CH2 groups in the alkyl derivatives of DB18C6.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 2, pp. 238–241, March–April, 1990.  相似文献   

17.
Stability constants K ML for the 1:1 complexes of Na+, K+, Rb+, and Cs+ with dibenzo-24-crown-8 (DB24C8) and dibenzo-18-crown-6 (DB18C6) in water have been determined by a capillary electrophoretic technique at 25°C. The K ML sequence is Na+ < K+ < Rb+ < Cs+ for DB24C8 and Na+ < K+ > Rb+ > Cs+ for DB18C6. Compared with DB18C6, DB24C8 exhibits higher selectivity for K+ over Na+, but lower selectivity for K+, Rb+, and Cs+. To evaluate the solvation of the complexes in water, their transfer activity coefficients sH2O between polar nonaqueous solvents and water have been calculated. The sH2O values provide the following information: interactions with water of the metal ions and of the crown-ether oxygens are greatly reduced upon complexation and the complexes undergo hydrophobic hydration in water; the character of each alkali metal ion in solvation is more effectively masked by DB24C8 than by DB18C6, because of the larger and more flexible ring structure of DB24C8. Solvent effects on the complex stabilities are discussed on the basis of the sH2O values.  相似文献   

18.
Abstract

Solvent extraction of lead halides with 18-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6, cis-syn-cis and cis-anti-cis isomers) in chloroform was studied, and the extraction constants corrected for side reactions and ionic strength effects were obtained. The compounds of the same composition as those being extracted were also isolated in crystal form. The molecular structure of the [Pb(18C6)I2] complex has been determined. Crystals are monoclinic, P21/n, a = 11.237(2), b = 10.992(2), c = 8.139(2)Å, β = 97.32(3)°, V = 997.1(7)Å3, Dcalc = 2.416(2)gcm?3, Z = 2 for the composition C12H24O6PbI2. The final R-factor is 0.043 for 558 unique reflections. The lead atom is coordinated to six oxygen atoms of the crown ether and two iodine atoms forming a hexagonal bipyramidal coordination polyhedron. The 18C6 molecule and the two halogen atoms form a hydrophobic coating for the lead atom which may be assumed to be the main reason of high extraction constants of the iodine complexes. For 10-coordinate lead ion (bidentate counter ions) the cis-syn-cis isomer of DC18C6 appears to be the best extraction reagent, while for 8-coordinate lead ion (monodentate halide anion) no difference between isomers was observed.  相似文献   

19.
New heterocyclic derivatives of dibenzo-18-crown-6 (DB18C6), the products of coupling of kojic acid (5-hydroxy-2-hydroxymethyl-γ-pyrone) with 4′-DB18C6-yldiazonium chloride, 4′,4″-and 4′,5″-DB18C6-diyldiazonium dichlorides and products of heterocyclization of DB18C6 mono-and dicarboxylic acids with thiosemicarbazide are prepared. Their structures are studied by the methods of 1H NMR and IR spectroscopy. Polyphosphoric acid is found to be the best agent for the heterocyclization of thiosemicarbazide with DB18C6 carboxylic derivatives. It is proven that the parent substrates, the DB18C6 mono or dicarboxylic acids, serve as phase transfer catalysts for the heterocyclization reaction. Extraction and transport properties of the obtained compounds in respect of potassium, sodium and ammonium picrates are explored.  相似文献   

20.
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号