首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A blend of poly(ε-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) containing 27.5 wt% of acrylonitrile having the critical composition (80/20 PCL/SAN) was studied. This PCL/SAN blend having a lower critical solution temperature (LCST) phase boundary at 122 °C offered an excellent opportunity to investigate, firstly the kinetics of phase separation above LCST (125-180 °C), and secondly the kinetics of phase dissolution below LCST (50-115 °C). The blend underwent a temperature-jump above LCST where spinodal decomposition (SD) proceeded, yielding a regularly phase-separated structure (SD structure). Then, it was quenched to the temperatures below LCST when the phase dissolution proceeded. Optical microscopy was used to observe the spinodal decomposition qualitatively while light scattering was used to characterize the phase separation and phase dissolution quantitatively. It was found that during phase dissolution the peak maximum moved towards a smaller angle (wavelength of concentration fluctuations increased) while the peak intensity decreased. This behavior was explained by a model. Also it was found that the fastest phase dissolution kinetics at 80 °C, which was characterized by an apparent diffusion coefficient, was about 10 times slower than the kinetics of phase separation at 180 °C.  相似文献   

2.
Catalysts constituted by neodymium versatate, diisobutylaluminium hydride and t-butyl chloride were used in this work. After their synthesis, they were aged at 40 °C for 48 h. Afterwards, they were maintained at 10 °C for more 5, 15, 40, 80, 160 and 250 days and finally the aged catalysts were evaluated in butadiene polymerization. The polybutadienes were characterized by size exclusion chromatography (SEC) to determine the molecular weight characteristics and by infrared spectroscopy (FTIR) to determine the microstructure. The aim of this work is to evaluate the effect of ageing time on 1,4 polymerization of butadiene. The results showed that the stereoselectivity of the active sites was not affected by the ageing conditions. However, the catalyst activity increased for long times of ageing.  相似文献   

3.
The ageing of filled and cross-linked ethylene propylene diene elastomer (EPDM) has been studied under accelerated UV irradiation (λ ≥ 290 nm) at 60 °C, thermal ageing at 100 °C and in nitric acid vapours for different time intervals. Hardness measurements were performed. DSC-thermoporosimetry was used to estimate the mesh size distribution and cross-linking densities for each ageing. The development of functional groups was monitored by ATR spectroscopy. An increase in oxidation with exposure time after the different types of ageing was observed. The thermal stability of EPDM was assessed by TGA and evolved volatile gases were identified using FTIR spectroscopy.  相似文献   

4.
Ageing behaviour of SBR/EVA blends due to the effects of heat, ozone, and gamma radiation was studied with reference to blend ratio, three crosslinking systems (sulfur, peroxide and mixed) and a compatibiliser (SEBS-g-MA). It was found that an increase in the EVA content of the blends enhanced the ageing characteristics. Among the different crosslinking systems, a peroxide cured system exhibited the best retention of properties even after severe ageing. Tensile strength of peroxide cured SBR/EVA blends increased slightly after ageing for three days at 70 °C due to continued crosslinking, whereas tensile strength of all blends decreased on ageing at 100 °C. Compatibilisation with SEBS-g-MA improved the thermal, gamma and water ageing resistance of SBR/EVA blends.  相似文献   

5.
Polyaniline films were produced in situ at room temperature from aniline hydrochloride oxidized with ammonium peroxydisulfate on glass surfaces immersed in an aqueous reaction mixture. A notable change in the character of the time dependence of resistivity at fixed temperature was observed when the temperature of ageing exceeded 85 °C. The ageing was much faster above this limit. This observation is reflected in the FTIR spectroscopic measurements on the aged protonated, as well as deprotonated, samples. The FTIR spectral variation may be explained by a conformational transition of the polymer chain at about 85 °C. The fact that a similar transition has been found with deprotonated samples indicates that this feature is an inherent property of polyaniline, and is not caused by the acid component of the PANI salt.  相似文献   

6.
Copper(II) oxide reacted with hydrazine in the presence of fluoroalkyl end-capped oxime-blocked isocyanato cooligomer containing adamantyl segments at 90 °C for 30 min in ethylene glycol, and the deprotecting reaction of the cooligomer in the resulting product at 120 °C for 15 min was found to afford the colloidal red-brown colored cross-linked fluorinated cooligomer/Cu nanocomposites, which were stabilized by fluoroalkyl end-capped cooligomer containing benzotriazole segments. On the other hand, the corresponding cross-linked fluorinated cooligomer possessing no adamantyl segments could not afford the copper nanocomposites under similar conditions. Dynamic light scattering measurements and TEM photography of these cross-linked fluorinated cooligomer/Cu composites showed that these composites are nanometer size-controlled very fine nanoparticles. These fluorinated Cu nanocomposites have a good dispersibility and stability in mixed solvents of ethylene glycol and methanol for two weeks under air atmosphere conditions. In addition, these fluorinated Cu nanocomposite powders have been found to be stable for more than three months.  相似文献   

7.
The design and some properties of a new general-purpose isothermal microcalorimeter are reported. The instrument is a twin thermopile heat conduction calorimeter, which is designed for use up to 200 °C. The calorimetric units and surrounding heat sink are suspended inside a hollow aluminium construction, which is thermostated. Above that unit a second thermostated block is positioned and the whole assembly is suspended inside a Dewar vessel. When the instrument is used at room temperature and below, the thermostated units are cooled by use of an insertion Peltier effect cooler. The instrument can be used with a wide range of different reaction vessels (diameter 14 mm). Baseline experiments have been conducted in the temperature range 15-200 °C. Typical values obtained during 10 h periods at 200 °C are ±3 and ±10 nW for the baseline drift and baseline fluctuations, respectively. The heat detection limit, determined by release of electrical energy, is about 2 μJ. Preliminary stability measurements have been conducted at 100 °C on samples of stabilised and non-stabilised polyamide film.  相似文献   

8.
The preparation of the biodegradable aliphatic polyester poly(propylene succinate) (PPSu) using 1,3-propanediol and succinic acid is presented. Its synthesis was performed by two-stage melt polycondensation in a glass batch reactor. The polyester was characterized by gel permeation chromatography, 1H NMR spectroscopy and differential scanning calorimetry (DSC). It has a number average molecular weight 6880 g/mol, peak temperature of melting at 44 °C for heating rate 20 °C/min and glass transition temperature at −36 °C. After melt quenching it can be made completely amorphous due to its low crystallization rate. According to thermogravimetric measurements, PPSu shows a very high thermal stability as its major decomposition rate is at 404 °C (heating rate 10 °C/min). This is very high compared with aliphatic polyesters and can be compared to the decomposition temperature of aromatic polyesters. TG and Differential TG (DTG) thermograms revealed that PPSu degradation takes place in two stages, the first being at low temperatures that corresponds to a very small mass loss of about 7%, the second at elevated temperatures being the main degradation stage. Both stages are attributed to different decomposition mechanisms as is verified from activation energy determined with isoconversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures is auto-catalysis with activation energy E = 157 kJ/mol while the second mechanism is a first-order reaction with E = 221 kJ/mol, as calculated by the fitting of experimental measurements.  相似文献   

9.
Thermal oxidation of sulfur vulcanized polyisoprene samples was studied by gravimetry and IR mapping of carbonyl groups (to determine the oxidized layer thickness (TOL)) at temperatures ranging from 60 to 150 °C in air. Oxidation appears noticeably lower than that for the starting non-vulcanized polyisoprene, revealing a stabilizing effect of sulfur-containing species. After a short period where mass loss presumably due to water evaporation predominates, the sample mass increases until a plateau corresponding to 6.3% (at 60 °C) to 0.5% (at 140 °C) mass gain. Practically no weight gain (∼0.1%) was observed at 150 °C. The mass uptake is due to oxygen grafting to the chains. TOL varies from about 4.6 mm (70 °C) to about 1 mm (150 °C).A kinetic model, derived from a mechanistic scheme of radical chain oxidation including stabilizing events due to hydroperoxide reduction by sulfur-containing groups and taking into account the diffusion-reaction coupling, was established and numerically resolved. The model predictions for mass changes and TOL values are in good agreement with experimental data.  相似文献   

10.
The feasibility of Ru as a permanent modifier for the determination of Cd in biological samples treated with tetramethylammonium hydroxide (TMAH) by ET AAS was investigated. The tube treatment with Ru was carried out only once and lasted for about 300 atomization cycles. The pyrolysis and atomization temperatures, 750 °C and 1300 °C, respectively, were chosen from the temperature curves. The sample dissolution procedure was very simple: a sample aliquot was mixed with a small volume of a 25% m/v TMAH solution, the volume was made up to 50 ml and the mixture was kept at 60 °C for 1 h. Six certified biological reference materials were analyzed and the obtained Cd concentrations are within the 95% confidence interval of the certified values, proving the accuracy of the proposed procedure for a variety of biological samples. The calibration curve, with correlation coefficient higher than 0.99, was established for a working range up to10 μg l−1. The precision was good as demonstrated by relative standard deviations below 3%, except for one sample. The limit of detection (3σ) was 0.05 μg l−1 and the characteristic mass was 1.30 pg, obtained in the presence of the Ru modifier.  相似文献   

11.
The new method to evaluate the anaerobic biodegradability of bioplastics, such as polycaprolactone (PCL) and poly (lactic acid) (PLA), under aquatic (slurry) conditions at 55 °C is applying. For this method, we prepared the sludge at 55 °C from the sludge at 37 °C by the method in which the sludge from the real tank operating at around 37 °C using cow manure and vegetable waste as the feed stock was preincubated at 55 °C. It was unknown at which stage the sludge during preincubation has the optimized anaerobic biodegradation activity of plastics. Four different stage sludges during preincubation (the sludge at 7 days after the start of preincubation at 55 °C, at 12 days, at 18 days, and at 40 days) were compared by the anaerobic biodegradation activity of PLA. The preincubated sludge at around 18 days (a gradual decrease in biogas evolution and a methane ratio over 60%) showed the highest biodegradation activity of PLA. In addition, the bacterial population in each sludge was analyzed by the denaturing gradient gel electrophoresis (DGGE) analysis of the amplified 16S rRNA gene fragments, however, the newly grown bacteria bands at 55 °C were not clearly detected.  相似文献   

12.
Microwave-assisted extraction using 1 M KOH/methanol (alkaline-MAE) in combination with solid-phase extraction treatment was developed and applied to polycyclic aromatic hydrocarbons (PAHs) in a sediment sample. Although various conditions were examined (100 or 150 °C for 10 or 30 min), comparable concentrations of PAHs to those obtained by conventional extraction with 1 M KOH/methanol at 70 °C for 4 h were obtained, even at 100 °C for 10 min. The concentrations obtained by using MeOH at 150 °C for 30 min without KOH were lower (by 1.3-37%) than those obtained by alkaline-MAE at 150 °C for 30 min. Since the developed technique can introduce higher concentration of benzo[ghi]perylene relative to those using pressurized liquid extraction (toluene, 150 °C, 15 MPa, 10 min, two cycles), the developed alkaline-MAE is a effective technique.  相似文献   

13.
New niobium oxynitrides containing either magnesium or silicon were prepared at 1000 °C by ammonia nitridation of oxide precursors obtained via the citrate route. The products had rock-salt type crystal structures. Crystallinity was improved by annealing in 0.5 MPa N2 and the final compositions were (Nb0.95Mg0.05)(N0.92O0.08) at 1500 °C and (Nb0.87Si0.090.04)(N0.87O0.13) at 1200 °C. The magnesium and oxide ions partially co-substitute the niobium and nitride ions in the octahedral sites of the δ-NbN lattice, respectively. Silicon ions were also successfully doped together with oxide ions into the rock-salt type NbN lattice. The Si doped product exhibited relatively large displacement at the octahedral sites and was accompanied by a small amount of cation vacancies. Superconductivity was improved by annealing to obtain critical temperatures/volume fractions of Tc=17.6 K/100% for Mg- and Tc=16.2 K/95% for the Si-doped niobium oxynitrides.  相似文献   

14.
NMR Studies on the reaction of triphenylphosphine with various amounts of triflic anhydride at 0 °C is described. The reagent structure resulting from mixing 1.3 equiv of Ph3P with Tf2O (1.0 mmol) has been established as an equilibrium mixture consisting mainly of triphenyl(trifluoromethylsulfonyloxy)phosphonium trifluoromethanesulfinate and the corresponding bis(triphenyl)oxodiphosphonium trifluoromethanesulfinate dimer. The electrophilic properties of the system have been exploited in the development of a mild method for converting aldoximes into nitriles. The dehydration occurs at 0 °C under very mild conditions by initial activation of the oxime oxygen, followed by treatment with a base and subsequent elimination of triphenylphosphine oxide. The substrate scope and functional group tolerance of this useful method are explored.  相似文献   

15.
Subcritical water (<374 °C and <221 bar) has unique characteristics such as dramatically decreased dielectric constant, surface tension, and viscosity with increasing temperature, allowing for dissolution and reaction of organics in high-temperature water to occur. Additionally, the dissociation constant of water at temperatures of 200-300 °C is three orders of magnitude greater than that of ambient water, which may also contribute to the reactivity of subcritical water with certain organic compounds. In this study, the degradation and oxidation of phenanthrene in subcritical water were investigated. Both deionized water and water with 3% hydrogen peroxide were used in the degradation and oxidation studies. The effect of temperature on degradation efficiency has been determined with a temperature range of 100-350 °C. When the temperature was increased from 150 to 350 °C, the amount of phenanthrene degraded varied from 6 to 243 μg in each milliliter of deionized water. However, these quantities were increased to 195 μg at 150 °C and 3680 μg at 350 °C in each milliliter of water with 3% hydrogen peroxide. Several degradation products including phenol, benzoic acid, and ketones were identified by using gas chromatography/mass spectrometry (GC/MS).  相似文献   

16.
Cable samples with plasticized poly(vinyl chloride) insulations were aged in air at temperatures between 80 and 155 °C. The concentrations of the plasticizer (di-(2-ethylhexyl) phthalate, DEHP) in the insulations of the aged cables were determined by extraction of samples in tetrahydrofuran followed by analysis of the extract by liquid chromatography. The plasticizer concentration data for different ageing times were analysed by numerical methods, fitting Fick's second law with a concentration-dependent diffusivity. The analysis showed that the transport of the plasticizer to the surrounding air phase was controlled by diffusion at 120 and 155 °C with an activation energy of 89 kJ mol−1. The evaporation of the plasticizer from the outer boundary was rate controlling at lower temperatures (≤100 °C). The rate of evaporation was initially constant and independent of the plasticizer concentration at both 80 and 100 °C. The activation energy for the initial DEHP loss rate from PVC at these temperatures was the same as that obtained for evaporation of pure DEHP on a glass plate at 60-100 °C measured by thermogravimetry, 98 ± 2 kJ mol−1. Furthermore, the evaporation rate of pure DEHP on a glass plate was also of the same order of magnitude as the rate of plasticizer loss from the cable insulation. Extrapolation of the plasticizer loss rate data (from the cable at 80 °C and from pure liquid DEHP at temperatures between 60 and 100 °C) to 25 °C predicted a maximum loss of plasticizer of 1% over 25 years. This is in accordance with earlier presented data and with the data presented in this report.  相似文献   

17.
Boron reacted with ball milled boron oxide under pressures between 1 and 5 GPa and at temperatures between 1300 and 1700 °C to afford boron suboxide (B6O). Icosahedral B6O grains with diameters ranging from 100 nm to 1.3 μm were prepared. The factors that affect the synthesis of B6O are investigated. The best sample with crystal size up to 1.3 μm is obtained at 2 GPa and 1400 °C for 6 h. The indentation experiment gave an average Vickers hardness of 32.3 GPa for bulk B6O sample, which is consistent with previous reports. Bulk B6O sample exhibits oxidation resistance in air up to 1000 °C and mild oxidation in the temperatures of 1000-1200 °C, which is more oxidation resistant than diamond. It is possible that B6O could be used as a substitute for diamond in industry because of its relatively mild synthesis conditions, high thermal stability and high hardness.  相似文献   

18.
New aspects of migration and flame retardancy in polymer nanocomposites   总被引:2,自引:0,他引:2  
Annealing of pristine polypropylene blended with the organomontmorillonite (OMMT) at temperatures of 180-340 °C under a stream of nitrogen and of nitrogen-air mixtures is investigated. The oxidative annealing brings about the dispersion of the OMMT in the polypropylene and the formation of a nanocomposite structure. This is evidenced by the increase in the interlayer distance ‘d’ as measured by small angle XRD, with time of annealing and with the weight percent of air. This indicates progressive intercalation of the polymeric matrix into the clay gallery and subsequently exfoliation. The degree of exfoliation is estimated by the extent of migration determined spectroscopically on the surface of the annealed sample. The accumulated clay on the surface due to migration hinders the penetration of the oxygen into the annealing melt as expressed by the decrease in the rate of migration with the increase in the air concentration. This indicates the increase in ageing and storage stability of nanocomposites with increase in the extent of migration. The extent of migration is proportional to the polar carbonyl groups formed on the matrix. The energy of activation of the migration was found to be 37.82 kJ/mol indicating that the rate-determining step of migration is diffusion controlled reaction. The penetration of oxygen into the melt is the first of five steps, followed by oxidation, intercalation, exfoliation and migration. Monitoring the migration with increase in the temperature enables the observation at 275 °C of the transition of the nanocomposite structure to noncolloidal microcomposite. Increasing the annealing temperature above 300 °C brings about a slow, low-temperature combustion and formation of a new kind of char on the surface of the sample.  相似文献   

19.
The influence of various parameters on the kinetics of poly(ethylene terephthalate) (PET) glycolysis by diethylene glycol (DEG), namely temperature (from 190 to 220 °C), temperature profile, catalysis and PET morphology has been studied.The results showed a strong influence of some experimental conditions (temperature and catalysis) on the mixture evolution during depolymerisation. The temperature study showed a critical temperature between 210 and 220 °C which seems to be the consequence of a better diffusion of DEG in PET, allowing easier reactions in solid phase. The initial morphology of PET scraps does not affect the rates of reactions much, in contrast to the temperature profile which has a great importance: time of PET dissolution at 220 °C is considerably shorter by heating PET and DEG separately at 220 °C before mixing, than by heating a cold mixture of the two reagents to 220 °C.  相似文献   

20.
The long-term stability of Pd–23%Ag/stainless steel composite membranes has been examined in H2/N2 mixtures as a function of both temperature and feed pressure. During continuous operation, the membrane shows a good stability at 400 °C while the N2 leakage increases very slowly at a temperature of 450 °C (Pfeed = 10 bar). After 100 days of operation (Pfeed = 5–20 bar, T = 350–450 °C), the N2 permeance equals 7.0 × 10−9 mol m−2 s−1 Pa−1, which indicates that the H2/N2 permselectivity still lies around 500, based on a H2 permeance equal to 3.0 × 10−6 mol m−2 s−1 Pa−1. Despite the generation of small pinholes, a membrane life-time of several (2–3) years (T ≤ 425 °C) is estimated for the experimental conditions employed based on long-term stability tests over 100 days. Post-process characterisation shows a considerable grain growth and micro-strain relaxation in the Pd–23%Ag membrane after the prolonged permeation experiment. Changes in surface area are relatively small. In addition, segregation of Ag to the membrane surfaces is observed. The formation of pinholes is identified as the main source for the increased N2 leakage during testing at higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号