首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Due to the economics of the ethylene market and the subsidized production of fermentation-based ethanol in some countries, use of the ethylene hydration process to make ethanol has been steadily declining. The economics of this process might improve by combining the reaction and separation in a reactive distillation column, whose conceptual design requires a study of the combined chemical and phase equilibrium (CPE) of the reacting system. In this work, the Peng-Robinson-Stryjek-Vera equation of state was combined with the UNIQUAC activity coefficient model through the Wong-Sandler (WS) mixing rules in order to correlate the available experimental data for the vapor-liquid equilibria (VLE) of the ethylene-water, ethylene-ethanol, and ethanol-water binary systems at 200 °C. The interaction energies of the UNIQUAC model and the binary interaction coefficient of the WS mixing rules were used as the fitting parameters. From the optimum values of these parameters, both the VLE and the combined CPE of the ethylene-water-ethanol ternary system were predicted at 200 °C and various pressures. At this temperature, the catalytic activity of a H-pentasil zeolite has already been reported to exhibit a maximum for ethylene hydration, and also the experimentally measured two-phase region of the ternary system is sufficiently wide. By means of the reactive flash method, the chemical equilibrium compositions of the liquid and vapor phases were determined for several pressures, and the equilibrium conversion and the vapor fraction were calculated as functions of the ethylene to water feed mole ratio. It turns out that the vapor-liquid mixed-phase hydration of ethylene achieves equilibrium conversions much higher than those computed for a vapor-phase reaction that would hypothetically occur at the same conditions of pressure and feed mole ratio. It was found that the reactive phase diagram of the ternary system exhibits a critical point at 200 °C and 155 atm.  相似文献   

2.
The integral molar excess Gibbs energy and the enthalpy of mixing of liquid alloys of the ternary system iron-nickel-cobalt at 1600°C were calculated by various methods from data on the boundary binary systems. The data for the boundary binary systems are analyzed in detail.  相似文献   

3.
The integral molar excess Gibbs energy and the enthalpy of mixing of liquid alloys of the ternary system nickel-copper-iron at 1600°C were calculated by various methods from data on boundary binary systems.  相似文献   

4.
Vapor–liquid equilibrium data for the difluoromethane (R32) + pentafluoroethane (R125) + propane (R290) ternary mixture were measured at 5 isotherms between 263.15 K and 323.15 K. The measurement was carried out using a circulation-type apparatus recently developed, which was validated with binary mixtures. With binary interaction parameters obtained for the three corresponding binary mixtures, VLE modeling and prediction were performed for the ternary mixture using the Peng–Robinson equation of state with the classical mixing rules and MHV1 mixing rules. Hou's group contribution model for VLE of new refrigerant mixtures was further tested with the experimental data for the ternary system. The predicted pressure and vapor phase composition were compared with experimental ones.  相似文献   

5.
In this work, the chitosan ternary nanocomposites with two-dimensional (2D) clay platelets and one-dimensional (1D) CNTs have been successfully prepared by a simple solution-intercalation/mixing method in acid media. It was found that the thermal degradation temperature of chitosan (at 50% weight loss) could be only improved in about 20-30 °C by adding 3 wt% either clay or CNTs, however, almost 80 °C increase of degradation temperature could be achieved by adding 2 wt% clay and 1 wt% CNTs together. Dynamic mechanical measurement demonstrated an obviously improved storage modulus for chitosan/clay-CNTs than that for the corresponding binary chitosan/clay or chitosan/CNT nanocomposites with the same total filler content (3 wt%). For the solvent vapor permeation properties, a largely improved benzene vapor barrier property was observed only in chitosan/clay-CNT ternary nanocomposites and depended on the ratio of clay to CNTs. XRD, SEM and TEM results showed that both clay and CNTs could be well dispersed in the ternary nanocomposites with the nanotubes located around the clay platelets. FTIR showed an improved interaction between the fillers and chitosan by using both clay and CNTs. A much enhanced solid-like behavior was observed in the ternary nanocomposites, compared with the corresponding binary nanocomposites with the same total filler content, as indicated by rheological measurement. The unique synergistic effect of two-dimensional (2D) clay platelets and one-dimensional (1D) CNTs on the property enhancement could be tentatively understood as due to a formation of much jammed filler network with 1D CNTs and 2D clay platelets combined together. Our work demonstrates a good example for the preparation of high performance polymer nanocomposites by using nanofillers with different dimensions together.  相似文献   

6.
Vapour–liquid equilibrium measurements for binary and ternary (carbon dioxide + β-myrcene and carbon dioxide + β-myrcene + hydrogen) systems have been carried out at 323.15 K and pressures in the range from 7 MPa to the critical pressure of the binary mixture and at pressures from 10 to 14 MPa for the investigated ternary systems. Samples from the coexisting phases were taken, and compositions were determined experimentally. Results were correlated using the Peng–Robinson and the Soave–Redlich–Kwong equations of state with the Mathias–Klotz–Prausnitz mixing rule. The set of interaction parameters for the employed equations of state and applied mixing rule for the system of CO2 + β-myrcene and of CO2 + β-myrcene + H2 were obtained. Additionally, the volume expansion of the liquid phase for the binary mixtures (carbon dioxide + β-myrcene and carbon dioxide + limonene) were measured at 323.15 K and at pressures from 4 MPa up to very close to the critical pressure of the mixture. The ratio of liquid phase total volumes at the given pressure and at 4 MPa was calculated.  相似文献   

7.
Acar O 《Talanta》2005,65(3):672-677
Cadmium, copper and lead in soils, sediments and spiked sea water samples have been determined by electrothermal atomic absorption spectrometry (ETAAS) with Zeeman effect background corrector using NH4NO3, Sc, Pd, Sc + NH4NO3, Pd + NH4NO3, Sc + Pd and Sc + Pd + NH4NO3 as chemical modifiers. A comprehensive comparison was made among the modifiers and without modifier in terms of pyrolysis and atomization temperatures, atomization and background absorption profiles, characteristic masses, detection limits and accuracy of the determinations. Sc + Pd + NH4NO3 modifier mixture was found to be preferable for the determination of analytes in soil and sediment certified and standard reference materials, and sea water samples because it increased the pyrolysis temperature up to 900 °C for Cd, 1350 °C for Cu and 1300 °C for Pb. Optimum masses of mixed modifier components found are 20 μg Sc + 4 μg Pd + 8 μg NH4NO3. Characteristic masses of Cd, Cu and Pb obtained are 0.6, 5.3 and 15.8 pg, respectively. The detection limits of Cd, Cu and Pb were found to be 0.08, 0.57 and 0.83 μg l−1, respectively. Depending on the solid sample type, the percent recoveries were increased up to 103% for Cd, Cu and Pb by using the proposed modifier mixture. The accuracy of the determination of analytes in the sea water samples was also increased.  相似文献   

8.
The Stryjek and Vera (1986) [9] modification of Peng-Robinson (PRSV2) equation of state has been applied for modeling vapor-liquid equilibrium of the systems MTBE + methanol, MTBE + ethanol and methanol + ethanol. Binary interaction parameters for mixing rules have been estimated by using experimental data at the atmospheric pressure. The calculated binary interaction parameters were used for predicting azeotropic behavior at high pressure and also for isobaric equilibrium points which showed an excellent agreement with experimental data. In addition, estimated binary interaction parameters for binary systems were used for ternary system (MTBE + methanol + ethanol). The predictions deviated only slightly from the experimental data. The results show PRSV2 can be used for VLE prediction of polar systems.  相似文献   

9.
1,4-Disubstituted 1,3-dialkynes were obtained from the one-pot palladium/copper-catalyzed coupling reactions of aryl iodide and propiolic acid. The optimized catalytic system consisted of 5.0 mol % Pd(PPh3)2Cl2, 10 mol % dppb, 10 mol % CuI, 2.4 equiv of DBU, and 1.2 equiv of K2CO3. The coupling reaction was carried out at 30 °C for 6 h and subsequently at 80 °C for 3 h.  相似文献   

10.
Isothermal vapor–liquid equilibrium data at 333.15 K are measured for the binary system ethanol + 2,2,4-trimethylpentane and for ternary system di-methyl carbonate (DMC) + ethanol + 2,2,4-trimethylpentane by using headspace gas chromatography. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different activity coefficient models. Excess volume and deviations in molar refractivity data are also reported for the binary systems DMC + ethanol and DMC + 2,2,4-trimethylpentane and the ternary system DMC + ethanol + 2,2,4-trimethylpentane at 298.15 K. These data were correlated with the Redlich-Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. The ternary excess volume and deviations in molar refractivity data were also compared with estimated values from the binary contribution models of Tsao–Smith, Kohler, Rastogi and Radojkovi?.  相似文献   

11.
The benzamide-derived P,O-ligands efficiently promoted the Pd-catalyzed Suzuki cross-coupling reactions of aryl bromides with phenylboronic acid at 0.01 mol % of Pd loading at 60-80 °C to form biaryls in excellent yields. A sterically hindered arylboronic acid gave a quantitative yield of the coupling product at 110 °C with 1 mol % Pd.  相似文献   

12.
This work paper presents vapour–liquid equilibrium (VLE) data for binary (CO2 + nicotine) and ternary (CO2 + nicotine + solanesol) mixtures, at 313.2 K and 6, 8 and 15 MPa. The (CO2 + nicotine) system exhibits three phases (L1L2V) in equilibrium at 8.37 MPa. It is estimated that this system most likely follows the type-III phase behaviour. In the ternary system, the presence of solanesol in the vapour phase was detected only at the pressure of 15 MPa. At this pressure, partition coefficients and separation factors for solanesol/nicotine were calculated for different initial nicotine/solanesol compositions and a strong influence of composition was found. The results were modelled using the Peng–Robinson equation of state (PR EOS) coupled with the Mathias–Klotz–Prausnitz (MKP) mixing rule (PR–MKP model). Good correlations of the binary data, particularly in the case of the (CO2 + nicotine) mixture, were obtained. However, the model could not correlate the ternary data.  相似文献   

13.
The Mg2TiO4/MgO composites prepared by reactive sintering of MgO and TiO2 powders (9:1 molar ratio) at 1600 °C and then air-cooled or further aged at 900 °C were studied by X-ray diffraction and analytical electron microscopy in order to characterize the microstructures and formation mechanism of nanosized Mg2TiO4 spinel precipitated from Ti-doped MgO. Expulsion of Ti4+ during cooling caused the formation of (001)-specific Guinier-Preston zone under the influence of thermal/sintering stress and then the spinel precipitates, which were about 30 nm in size and nearly spherical with {111} and {100} facets to minimize coherency strain energy and surface energy. Secondary nanosized spinel was precipitated and became site saturated during aging at 900 °C, leaving a precipitate-free zone at the grain boundaries of Ti-doped MgO. The intergranular spinel became progressively Ti-richer upon aging at 900 °C and showed 〈110〉-specific diffuse scatter intensity likely due to short-range ordering and/or onset decomposition.  相似文献   

14.
Vapor–liquid equilibrium (VLE) at 101.3 kPa have been determined for the ternary system ethanol + 2-butanone + 2,2,4-trimethylpentane (isooctane) and its constituent binary systems: ethanol + 2,2,4-trimethylpentane, ethanol + 2-butanone, and 2-butanone + 2,2,4-trimethylpentane. Minimum boiling azeotropes were observed for all these binary systems. No azeotropic behavior was found for the ternary system. Thermodynamic consistency tests were performed for all VLE data. The activity coefficients of the binary mixtures were satisfactorily correlated with the Wilson, NRTL, and UNIQUAC models. The models with their best-fitted binary parameters were used to predict the ternary vapor–liquid equilibrium.  相似文献   

15.
Solid–liquid, liquid–liquid and vapour–liquid equilibrium measurements for binary and ternary systems containing building blocks of biomass origin such as propionic acid, lactic acid and alternative solvents like carbon dioxide and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid have been carried out at 313.15 K. The binary solid–liquid and liquid–liquid equilibrium measurements were performed at ambient pressure. The vapour–liquid equilibrium was studied in the range of pressure from 3.54 to 12 MPa while ternary systems were examined at 9, 10 and 12 MPa. The samples from the coexisting phases were taken and the compositions of both liquid and vapour phases were determined experimentally. The three-phase system was observed for lactic acid + ionic liquid + CO2 as well. The achieved results were correlated using the Peng–Robinson equation of state with the Mathias–Klotz–Prausnitz mixing rule. The set of interaction parameters for the employed equations of state and the mixing rule for the investigated systems were obtained.  相似文献   

16.
Polycrystalline gadolinium gallium mixed oxides were prepared by coprecipitation and annealing at various temperatures below 1000 °C. The oxide materials appear to be X-ray amorphous after a heat treatment at 500 °C for 30 h, but after 30 h at 800 and 900 °C a major, unreported, hexagonal phase, isostructural with TAlO3 compounds (where T=Y, Eu, Gd, Tb, Dy, Ho, Er) appears to crystallize. On the other hand, a highly energetic mechanical treatment of the amorphous powder previously annealed at 500 °C changes considerably the shape and position of exothermal events occurring in the range from 700 up to 900 °C. Subsequent annealing at 900 °C of the mechanically treated powder gives rise to the complete formation of the Gd3Ga5O12 garnet structure at the expense of the hexagonal phase and of the minor Gd4Ga2O9 oxide phase. However, a 7.0 wt% contamination is found to be due to tetragonal zirconia coming from vials and balls colliding media. The garnet phase may have strong deviations from the nominal stoichiometry of the garnet, as suggested by the refined lattice parameter obtained from the powder diffraction patterns and by the remarkable absence of intensity relative to the (220) Bragg peak position.  相似文献   

17.
Effect of fulvic acid on neodymium uptake by goethite   总被引:1,自引:0,他引:1  
Experimental studies of the interaction of aqueous neodymium (Nd), Suwannee River fulvic acid (FA), and solid phase goethite were conducted. Results from blank systems (individual Nd and FA), binary systems (Nd-goethite, FA-goethite, and Nd-FA), and ternary systems (Nd-FA-goethite) at 0.1 mol/kg and 25 °C are reported.In the binary Nd-goethite system a classic sorption edge is observed, whereby virtually all Nd is removed from solution above the goethite point of zero charge (PZC). Similarly, the binary FA-goethite system exhibits strong FA sorption; However in this system near complete removal of FA from solution is observed below the goethite PZC. In the binary Nd-FA system, both aqueous Nd and FA feature a sharp decrease in concentration at ca. pH 9.Various experiments in the ternary system were conducted. For all concentrations, FA enhanced Nd sorption below the goethite PZC, attributed to the formation of a Type B ternary surface complex (mineral-ligand-metal ion). Notably, the 100 ppm FA ternary system showed anomalously high dissolved Nd in solution above the PZC (i.e., Nd sorption suppression) and a concomitant increase in goethite dissolution (∼9 ppm total Fe3+ observed above circa pH 9.5).Our results suggest that Nd-FA complexation plays a key role in Nd uptake by goethite, and that this process is largely governed by pH: Whereas at pHs below the goethite PZC, Nd-FA complexation facilitates Nd sorption, above the PZC, and particularly at elevated FA concentrations, the formation of aqueous Nd-FA complexes suppresses Nd removal. Moreover, under these conditions, goethite dissolution may also play a role in mitigating Nd uptake by goethite.  相似文献   

18.
Mechanochemical activation of minerals on the cordierite synthesis   总被引:1,自引:0,他引:1  
The cordierite is commonly prepared by reaction of talc, clay and gibbsite within the range of 1200-1350 °C. This study deals with the effect of the amorphization by grinding of that mixture and its influence on the cordierite formation.The mixture previously mentioned underwent six different treatments: mixing without grinding (A) (only mixing); non-amorphizing grinding (AM) and amorphizing grinding in oscillating mill at four different times (H samples). The phases formed by thermal treatment were studied using differential thermal analysis (DTA)-thermogravimetric analysis (TG)-DTG, dilatometries and X-ray diffraction (XRD) techniques in certain combinations.The thermal analysis of the A and AM series were compared and they do not show significant differences, whereas the H samples present remarkable alterations in the DTA peaks as well as in the weight losses (TG). Thus, a great number of DTA peaks tend to decrease the temperature of the maximum and to lower the intensity as the amorphization time increases.Calcination tests performed within the range 900-1200 °C show important differences in the diffractograms obtained from the intermediate products. While at 1350 °C the A and H samples reach the same final phases, within the range 1200-1360 °C they present important differences in the DTA indicating that the sequence and direction of reaction are different. The same behavior can be observed by dilatometric analysis.  相似文献   

19.
We prepared a Pd nanocatalyst (average diameter of Pd nanoparticles = 1.73 nm) displaying a remarkable activity for the racemization and dynamic kinetic resolution (DKR) of 1-methylbenzylamine. It was eight times more active than the previous best. The DKR of 1-methylbenzylamine with the Pd nanocatalyst (2 mol %) in the presence of a thermostable lipase (Novozym 435) was complete in 6 h at 70 °C. The DKRs of other benzyl amines also proceeded to completion in 6 h under similar conditions except the amount of Pd nanocatalyst.  相似文献   

20.
A potentiometric titration technique has been used to determine the stability constants for the various complexes of Ni(II) with adenine (A) as primary ligand and selected amino acids (L) as secondary ligands. Ternary complexes of amino acids are formed in a stepwise mechanism, whereby (A) binds to Ni(II), followed by interaction with ligand (L), whereas thiol-containing ligands form ternary complexes through a simultaneous mechanism. The formation constants of the complexes were determined at 25 °C and ionic strength 0.1 M NaNO3. The relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog K values. The concentration distribution of the complexes are evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号