首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipase-catalyzed hydrolysis of (E)-2-[α-(acetoxyimino)benzyl]-1,1′-binaphthyl [(±)-1a] and (Z)-2-[α-(acetoxyimino)benzyl]-1,1′-binaphthyl [(±)-1b] yielded optically active (E)-2-[α-(hydroxyimino)benzyl]-1,1′-binaphthyl [(S)-2a] and (Z)-2-[α-(hydroxyimino)benzyl]-1,1′-binaphthyl [(R)-2b], respectively, with high enantiomeric excess. Selectivity for the opposite enantiomer of the axial binaphthyl skeleton was shown by (Z)-isomer 1b against (E)-isomer 1a.  相似文献   

2.
To synthesize (3′R,5′S)-3′-hydroxycotinine [(+)-1], the main metabolite of nicotine (2), cycloaddition of C-(3-pyridyl)nitrones 3a, 3c, and 15 with (2R)- and (2S)-N-(acryloyl)bornane-10,2-sultam [(2R)- and (2S)-8] was examined. Among them, l-gulose-derived nitrone 15 underwent stereoselective cycloaddition with (2S)-8 to afford cycloadduct 16, which was elaborated to (+)-1.  相似文献   

3.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

4.
Lipase-catalyzed acylation of 2-hydroxyiminomethyl-1,1′-binaphthyl [(±)-1] and hydrolysis of 2-acetoxyiminomethyl-1,1′-binaphthyl [(±)-2] yielded optically active oximes 1 and 2 with high enantiomeric excess. Successful synthesis of the optically active aldehyde 4 from chiral O-acetyl oxime 2 occurred without a decrease of enantiomeric excess.  相似文献   

5.
Chiral conjugated polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((R)-M-1) and (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((S)-M-1) with 2,5-bis(4-vinylphenyl)-1,3,4-oxadiazole (M-2) under Pd-catalyzed Heck coupling reaction, respectively. Both monomers and polymers were analysed by NMR, MS, FT-IR, UV, DSC-TG, fluorescent spectroscopy, GPC and CD spectra. The chiral conjugated polymers exhibit strong Cotton effect in their circular dichroism (CD) spectra indicating a high rigidity of polymer backbone. CD spectra of polymers P-1 and P-2 are almost identical and have opposite signs for their position. These polymers have strong blue fluorescence.  相似文献   

6.
Shin-ichi Naya 《Tetrahedron》2008,64(14):3225-3231
As novel methodology for synthesizing the furan ring, a photoinduced oxidative cyclization of 5-(4′,9′-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-triones (7a-c) and related compounds 9a-c was accomplished to give 5,10-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1,3H)-dionylium tetrafluoroborates (8a-c+·BF4) and related compounds 2a-c+·BF4, respectively. In the photoinduced oxidative cyclization, the molecular oxygen in air is used as oxidant and the reaction proceeds under mild conditions to give desired products without byproducts, and thus, it is interesting from the viewpoint of the green chemistry. On the reactions of the mono-substituted derivatives 7d,e and 9e,f, the selectivity of the photoinduced cyclizations were reversed as compared with those of the DDQ-promoted oxidative cyclizations. By the NMR monitoring of the reactions of 7a and deuterated compound 7a-D2 under degassed conditions, the details of the reaction pathway were clarified and rationalized on the basis of the MO calculation by the 6-31G basis set of the MP2 levels as well.  相似文献   

7.
A series of 2′ functionalized acyclic nucleoside phosphonate derivatives of 1-[3′-(phosphonomethoxy)propyl]uracil (1-4) have been synthesized together with the 1′ and 2′-ethynyl derivatives of 9/1-[2′-(phosphonomethoxy)ethyl]adenine/thymine (5-7). Key intermediates leading to the latter series are (±)-[2-{diethyl(phosphonomethoxy)}-1-hydroxy]-but-3-yne (25) and (±)-diisopropyl{[2-hydroxy-4-(trimethylsilyl)but-3-yn-1-yl]oxy}methylphosphonate (30). Compounds 25 and 30 are easily obtained starting from (±)-solketal.  相似文献   

8.
Ming-Guo Liu  Yang-Gen Hu 《Tetrahedron》2008,64(38):9052-9059
Mono(iminophosphorane) 4 was selectively prepared from the reaction of 3,4-diaminothieno[2,3-b]thiophene 3 with excess triphenylphosphine, C2Cl6, and Et3N due to intramolecular double hydrogen bond formation. Mono(iminophosphorane) 4 reacted with aromatic isocyanates to give stable carbodiimides 8, which were further treated with aliphatic secondary or primary amines to give 2-amino substituted thieno[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-ones 10 or 12 in the presence of a catalytic amounts of EtONa+. However, in the presence of a catalytic amounts of potassium carbonate, the carbodiimides 8 were transformed into previously unreported 5H-2,3-dithia-5,7-diaza-cyclopenta[c,d]indenes 13 via direct cyclization in high yields. The reaction of carbodiimides 8 with phenols in the presence of a catalytic amounts of potassium carbonate gave a mixture of 2-aryloxy substituted thieno[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-ones 14 and 13. X-ray structure analysis of 10m supported the structure and the proposed reactivity of amino group.  相似文献   

9.
The enantioselective alkynylation of aldimines with terminal acetylenes catalyzed by chiral Cu(I) complexes with (R)-2,2′-di(2-aminoaryloxy)-1,1′-binaphthyl ligands (7) was examined. Chiral C2-symmetric N,N-ligands 7, which have primary aniline moieties, were readily prepared from inexpensive (R)-1,1′-binaphthol (BINOL) as a chiral source. In particular, the reaction of N-benzylidenebenzeneamine 1a with phenylacetylene 2a proceeded smoothly in the presence of 5 mol % of (CuOTf)2·C6H5CH3 and 10 mol % of (R)-7d at room temperature for 24 h, and the corresponding propargylamine 3a was obtained with up to 82% ee.  相似文献   

10.
Lipase-catalyzed amidation of 2-[2-(ethoxycarbonyl)ethyl]-1,1′-binaphthyl [(±)-3] yielded optically active (S)-3 and 2-[2-(2-cyanoethylaminocarbonyl)ethyl]-1,1′-binaphthyl [(R)-6a] with high enantiomeric excess. For these lipase-catalyzed amidations, the optimal alkyl chain length between the binaphthyl ring and the ester group was determined to be an ethylene spacer.  相似文献   

11.
We report herein the synthesis of appropriately protected 2′-deoxy-2′-fluoro-4′-thiouridine (5), -thiocytidine (7), and -thioadenosine (35) derivatives, substrates for the synthesis of novel modified RNAs. The synthesis of 5 and 7 was achieved via the reaction of 2,2′-O-anhydro-4′-thiouridine (3) with HF/pyridine in a manner similar to that of its 4′-O-congener whereas the synthesis of 35 from 4′-thioadenosine derivatives was unsuccessful. Accordingly, 35 was synthesized via the glycosylation of the fluorinated 4-thiosugar 25 with 6-chloropurine. The X-ray crystal structural analysis revealed that 2′-deoxy-2′-fluoro-4′-thiocytidine (8) adopted predominately the same C3′-endo conformation as 2′-deoxy-2′-fluorocytidine.  相似文献   

12.
Three unique propeller-shaped helicenyl amines compounds: N,N-diphenyl-N-naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl-amine (1), N-phenyl-N,N-di(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (2), and N,N,N-tri(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (3) were efficiently synthesized by Wittig reaction and oxidative photocyclization. The crystal structures of 1, 2 and molecular configuration optimization (DFT-B3LYP/6-31+G(d)) of 3 reveal that the steric hindrance from the moiety of trithia[5]helicene effectively forces the nitrogen atom and the three bonded carbon atoms to coplanar and the interplanar angles of the facing terminal thiophene ring and benzene ring becoming larger when the helical arm increased from 1 to 3. Electrochemical properties and UV–vis absorption behaviors of 1, 2, 3 were primarily determined by the moiety of trithia[5]helicene.  相似文献   

13.
A total synthesis of the 7,9,7′,9′-tetra-cis(Z) isomer of lycopene, also known as ‘prolycopene’, produced as the major carotenoid pigment in fruits of the tangerine tomato Lycopersicon esculentum (‘Tangella’) is described. The synthesis is based on: (i) a modified Sonogashira coupling reaction between the E-alkenyl bromide 6 and the Z-enynol 7, leading to the 2Z-trienynol 8, followed by (ii) a Wittig reaction between the phosphonium salt 4 and the C10-triene dialdehyde 5 producing the symmetrical 9,9′-Z isomer of the bis-acetylene 3 and (iii) semi-hydrogenation of 3 in the presence of Lindlar's catalyst, and chromatography.  相似文献   

14.
Condensation of (S)-2-amino-2′-hydroxy-1,1′-binaphthyl with 1 equiv. of pyrrole-2-carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (S)-2-(pyrrol-2-ylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl (1H2) in 90% yield. Deprotonation of 1H2 with NaH in THF, followed by reaction with LnCl3 in THF gives, after recrystallization from a toluene or benzene solution, dinuclear complexes (1)3Y2(thf)2 · 3C7H8 (3 · 3C7H8) and (1)3Yb2(thf)2 · 3C6H6 (4 · 3C6H6), respectively, in good yields. Treatment of 1H2 with Ln[N(SiMe3)2]3 in toluene under reflux, followed by recrystallization from a benzene solution gives the dimeric amido complexes {1-LnN(SiMe3)2}2 · 2C6H6 (Ln = Y (5 · 2C6H6), Yb (6 · 2C6H6)) in good yields. All compounds have been characterized by various spectroscopic techniques, elemental analyses and X-ray diffraction analyses. Complexes 5 and 6 are active catalysts for the polymerization of methyl methacrylate (MMA) in toluene, affording syn-rich poly-(MMA)s.  相似文献   

15.
By using a direct ortho-lithiation, the ligands (S)-3-methoxymethyl-1,1′-bi-2-naphthol [(S)-1], (S)-3,3′-bis(methoxymethyl)-1,1′-bi-2-naphthol [(S)-2], (S)-3-(quinolin-2-yl)-1,1′-bi-2-naphthol [(S)-3] and (S)-3,3′-bis(quinolin-2-yl)-1,1′-bi-2-naphthol [(S)-4] have been synthesized. (S)-1 and (S)-3 show moderate catalytic properties for the asymmetric diethylzinc addition to aromatic aldehydes.  相似文献   

16.
A wide variety of monobrominated compounds 2a-l have been prepared in good yields from (E)-1-(2′-hydroxy-4′,6′-dimethoxyphenyl)-3-aryl-2-propen-1-ones (1a-l) through regioselective ring bromination using 1.5 equiv of bromodimethylsulfonium bromide (BDMS) at room temperature. Similarly, some of the 2′-hydroxychalcones can be converted directly into tribromides 3 or dibromides 4 by employing 4.0 equiv of BDMS under different reaction conditions which in turn can be transformed into 8-bromoflavones and 7-bromoaurones on treatment with 0.2 M ethanolic KOH solution. Mild reaction conditions, good yields and no chromatographic separation are some of the salient features of the present protocol.  相似文献   

17.
(S)-2-(4-Bromo-2,4′-bithiazole)-1-(tert-butoxycarbonyl)pyrrolidine ((S)-1) was obtained as a single enantiomer and in high yield by means of a two-step modified Hantzsch thiazole synthesis reaction when bromoketone 3 and thioamide (S)-4 were used. Further conversion of (S)-1 into trimethyltin derivative (S)-2 broadens the scope for further cross-coupling reactions.  相似文献   

18.
Reactions between the C,C′-dicopper(I) derivative of ortho-carborane and ortho-, meta- and para-diiodobenzene are reported. The reaction with 1,2-C6H4I2 unexpectedly afforded 2,2′-bis(1′-ortho-carboranyl)biphenyl, [HCB10H10CC6H4]22, whereas reactions with 1,3- or 1,4-C6H4I2 provided alternative routes to 1,3-bis(1′-ortho-carboranyl)benzene 3 and 1,4-bis(1′-ortho-carboranyl)benzene 4, respectively. The crystal structure of the biphenyl derivative 2 revealed significant distortions in the biphenylene framework attributable to the proximity of the two bulky carborane cages. UV absorption spectra and electrochemical data on 2 and 3 showed little electronic communication between the two carborane cages in either, and negligible π-conjugation between the two ortho-phenylene rings in 2. However, substantial evidence was found of electronic communication between the carborane cages via the para-phenylene bridge in 4. B3LYP/6-31G computations have been carried out on compounds 2 and 4, on 4,4′-bis(ortho-carboranyl)biphenyl 6 and on 1,2-bis(1′-ortho-carboranyl)benzene 7. Those on 2, 4 and 6 show the computed geometries to be in very good agreement with the experimental geometries: those on 7 allowed the reported molecular geometry of this compound to be revised and revealed a long cage C–C bond of 1.725(3) Å.  相似文献   

19.
Novel dipyrido[1,2-a;3′,4′-d]imidazoles 7a-d, dipyrido[1,2-a;4′,3′-d]imidazoles 8a,c and pyrido[1′,2′;1,2]imidazo[4,5-d]pyridazine derivatives 9a-d were synthesized by two pathways: thermal electrocyclic reaction of 3-alkenylimidazopyridine-2-oximes 10 and direct condensation of ethyl glycinate (or hydrazine) with 2,3-dicarbonylimidazo[1,2-a]pyridines 11.  相似文献   

20.
Barbier type additions of allylic bromide 4, derived from (Z)-but-2-en-1,4-diol 2 to (R)-2,3-cyclohexylideneglyceraldehyde 1 were performed through mediation with Zn employing Luche’s procedure and also with low valent Cu, Co, and Fe which were produced via bimetal redox strategy in THF to afford 5c,d as the major products. From these, 5a,b were prepared following an oxidation-reduction protocol. Compound 5c was exploited as a representative starting material to develop a simple and inexpensive strategy toward the synthesis of 3′-C-branched 2′,3′-dideoxynucleosides having stereodiversity at 3′- and 4′-positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号