首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependences of the heat capacity C p° = f(T) were studied in an adiabatic vacuum calorimeter for the orthorhombic, tetragonal, and rhombohedral polymeric C60 phases in the 7—340 K temperature interval with an error of 0.2%. Comparative analysis of C p° of these phases formed by stacking of one-dimensional and two types of two-dimensional polyfullerenes C60, was performed, and their fractal dimensionalities D were determined for temperatures below 50 K. The thermodynamic functions of the crystalline polymeric C60 phases were calculated in the temperature region from O 0 to 340 K: C p°(T), H°(T) — H°(0), S°(T) — S°(0), and G°(T) — H°(0). Assuming that S°(0) = 0, the standard entropies of formation f S° of these phases from graphite at T = 298.15 K and standard pressure were calculated. In addition, the entropies of transformation of the initial face-centered cubic phase of fullerite C60 in the crystalline polymeric C60 phases and entropies of their interconversions under the same conditions were estimated. The thermodynamic characteristics of the polymeric C60 phases were reviewed.  相似文献   

2.
By high-precision dynamic calorimetry the temperature dependences of heat capacity of dimethylene urethane (DMU) between 320 and 370 K and partially crystalline poly(dimethylene urethane) (PDMU) in the range 326-490 K at standard pressure have been determined within ±1.5%. The thermodynamic characteristics of fusion of the substances, namely the temperature interval of melting, temperature, enthalpy and entropy of fusion, as well as the characteristics of devitrification and glassy state for poly(dimethylene urethane) have been estimated. The first and the second cryoscopic constants have been calculated for dimethylene urethane. The experimental data obtained in the present work and literature findings on the heat capacity of the substances were used to calculate their thermodynamic functions: the heat capacity C°p (T), enthalpy H°(T)−H°(0), entropy S°(T) and Gibbs function G°(T)−H°(0) over the range from T→0 to (370-480) K. Based on the data, the thermodynamic characteristics of polymerization process with five-membered ring opening ΔpolH°, ΔpolS° and ΔpolG° of dimethylene urethane with the formation of linear partially crystalline poly(dimethylene urethane) have been evaluated.  相似文献   

3.
The heat capacity investigation of crystalline pentasodium zirconium tris(phosphate) was carried out in a vacuum adiabatic calorimeter between 7 and 340 K and in a differential scanning calorimeter of the heat bridge type between 330 and 620 K. Between 389 and 424 K, an isostructural solid-to-solid phase transition of Na5Zr(PO4)3, has been found, the nature of which is connected with a centering of off-centered zirconium atoms in octahedral sites and an occupation transfer between sodium sites in the structure. The results were used to calculate the characteristics of the phase transition and the thermodynamic functions of Na5Zr(PO4)3: the transition temperature T°trs, enthalpy of transition ΔtrsH°, entropy of transition ΔtrsS°; enthalpy H°(T)−H°(0), entropy S°(T) and Gibbs function G°(T)−H°(0) over the range from 0 to 620 K. From hydrofluoric acid solution microcalorimetry, the enthalpy of solution of Na5Zr(PO4)3 at 298.15 K has been determined and the standard enthalpy of formation has been derived. By combining the data obtained by the two techniques, the Gibbs function of formation of Na5Zr(PO4)3 at 298.15 K has been calculated.  相似文献   

4.
Temperature dependences of the heat capacities of disordered graphite-like nanostructures prepared by the thermobaric treatment of fullerite C60 (p = 2 and 8 GPa, T = 1373 K) were measured in the temperature ranges from 7 to 360 K in an adiabatic vacuum calorimeter and from 330 to 650 K in a differential scanning calorimeter. At T < 50 K, the dependences obtained were analyzed using the Debye theory of the heat capacity of solids and its multifractal version. The fractal dimensions D were determined and some conclusions on the heterodynamic character of the structures studied were made. The thermodynamic functions C p o T), H o(T) − H o(0), S o(T) − S o(0), and G o(T) − H o(0) were calculated in the temperature range from T → 0 to 610 (650) K. The thermodynamic properties of the graphite-like nanostructures studied and some carbon allotropes were compared. The standard entropies of formation Δf S o of the graphite nanostructures studied and diamond were calculated along with the standard entropies of the reactions of their synthesis from the face-centered cubic phase of fullerite C60 and their interconversions at T = 298.15 K. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1940–1945, September, 2008.  相似文献   

5.
The temperature dependence of heat capacity and characteristics of physical transformations of partially crystalline linear aliphatic polyurethanes based on 1,4-diisocyanatobutane with 1,4-butanediol and 1,6-hexanediol have been studied over the range 6.5-490 K by precision adiabatic vacuum and dynamic calorimetry. The calorimetric data were used to determine the thermodynamic quantities of devitrification and fusion and to calculate the standard thermodynamic functions , H0(T) − H0(0), S0(T) and G0(T) − H0(0) of linear polyurethanes in totally crystalline and amorphous states. The values of the fractal dimension D in the function of multifractal generalization of Debye's theory of the heat capacity of solids were estimated and the character of heterodynamics of their structures was detected. The energies of combustion of the substances were measured in a calorimeter with an isothermal shield and a static bomb. The enthalpies of combustion and the standard thermodynamic characteristics of formation of the polymers at T = 298.15 K were calculated too. The standard thermodynamic characteristics of polycondensation processes in bulk of 1,4-diisocyanatobutane with 1,4-butanediol and 1,6-hexanediol followed by the formation of linear polyurethanes were determined in the range from 0 to 350 K. A comparative analysis of the corresponding standard thermodynamic properties of the polymers under consideration and polyurethanes of isomeric structure was made and some dependences of their change on various conditions were found.  相似文献   

6.
The citrate-nitrate gel combustion route was used to prepare SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s) powders and the compounds were characterized by X-ray diffraction analysis. Different solid-state electrochemical cells were used for the measurement of emf as a function of temperature from 970 to 1151 K. The standard molar Gibbs energies of formation of these ternary oxides were calculated as a function of temperature from the emf data and are represented as (SrFe2O4, s, T)/kJ mol−1 (±1.7)=−1494.8+0.3754 (T/K) (970?T/K?1151). (Sr2Fe2O5, s, T)/kJ mol−1 (±3.0)=−2119.3+0.4461 (T/K) (970?T/K?1149). (Sr3Fe2O6, s, T)/kJ mol−1 (±7.3)=−2719.8+0.4974 (T/K) (969?T/K?1150).Standard molar heat capacities of these ternary oxides were determined from 310 to 820 K using a heat flux type differential scanning calorimeter (DSC). Based on second law analysis and using the thermodynamic database FactSage software, thermodynamic functions such as ΔfH°(298.15 K), S°(298.15 K) S°(T), Cp°(T), H°(T), {H°(T)-H°(298.15 K)}, G°(T), free energy function (fef), ΔfH°(T) and ΔfG°(T) for these ternary oxides were also calculated from 298 to 1000 K.  相似文献   

7.
We determined apparent molar volumes V? from densities measured with a vibrating-tube densimeter at 278.15 ? (T/K) ? 368.15 and apparent molar heat capacities Cp,? with a twin fixed-cell, differential, temperature-scanning calorimeter at 278.15 ? (T/K) ? 363.15 for aqueous solutions of N-acetyl-d-glucosamine at m from (0.01 to 1.0) mol · kg−1 and at p = 0.35 MPa. We also determined V? at 278.15 ? (T/K) ? 368.15 and Cp,? at 278.15 ? (T/K) ? 393.15 for aqueous solutions of N-methylacetamide at m from (0.015 to 1.0) mol · kg−1 and at p = 0.35 MPa. Empirical functions of m and T for each compound were fitted to our results, which are then compared to those for N,N-dimethylacetamide. Estimated values of ΔrVm(mT) and ΔrCp,m(mT) for formation of aqueous N-acetyl-d-glucosamine from aqueous d-glucose and aqueous acetamide are calculated and discussed.  相似文献   

8.
Low-temperature heat capacity Cp,m of 2,6-dicarboxypyridine (C7H5NO4; CAS 499-83-2) was precisely measured in the temperature range from (80 to 378) K with a high precision automated adiabatic calorimeter. No phase transition or thermal anomaly was observed in this range. The thermodynamic functions [HT − H298.15] and [ST − S298.15] were calculated in the range from (80 to 378) K. The standard molar enthalpy of combustion and the standard molar enthalpy of formation of the compound have been determined, and , by means of a precision oxygen-bomb combustion calorimeter at T = 298.15 K. The thermodynamic properties of the compound were further investigated through differential scanning calorimeter (DSC) and the thermogravimetric (TG) analysis.  相似文献   

9.
Microcalorimetric measurements of excess enthalpies at the temperature T = 298.15 K are reported for the binary mixture, (x1C6H12 + x2C4H8O) and the two ternary mixtures {x1C6H12 + x2(C4H8O or C5H10O) + x3(C5H12O)}. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that good estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

10.
Low-temperature heat capacities of the compound Na(C4H7O5)·H2O(s) have been measured with an automated adiabatic calorimeter. A solid-solid phase transition and dehydration occur at 290-318 K and 367-373 K, respectively. The enthalpy and entropy of the solid-solid transition are ΔtransHm = (5.75 ± 0.01) kJ mol−1 and ΔtransSm = (18.47 ± 0.02) J K−1 mol−1. The enthalpy and entropy of the dehydration are ΔdHm = (15.35 ± 0.03) kJ mol−1 and ΔdSm = (41.35 ± 0.08) J K−1 mol−1. Experimental values of heat capacities for the solids (I and II) and the solid-liquid mixture (III) have been fitted to polynomial equations.  相似文献   

11.
Using an on-line solution-reaction isoperibol calorimeter, the standard molar enthalpies of reaction for the general thermochemical reaction: LnCl3·6H2O(s) + 2C9H7NO(s) + CH3COONa(s) = Ln(C9H6NO)2(C2H3O2)(s) + NaCl(s) + 2HCl(g) + 6H2O(l) (Ln: Nd, Sm), were determined at T=298.15 K, as  kJ mol−l, respectively. From the mentioned standard molar enthalpies of reaction and other auxiliary thermodynamic quantities, the standard molar enthalpies of formation of Ln(C9H6NO)2(C2H3O2)(s) (Ln: Nd, Sm), at T=298.15 K, have been derived to be: −(1494.7±3.3) and −(1501.5±3.4) kJ mol−l, respectively.  相似文献   

12.
The temperature dependence of the heat capacity of gold phenylacetylide in the range 13-330 K was measured in an adiabatic vacuum calorimeter with an accuracy of 0.3%. These data were used for calculating the thermodynamic functions C p0(T), H 0(T) - H 0(0), S 0(T) - S 0(0), and G 0(T) - H 0(0) for the range 0-330 K. The standard entropy of formation f S 0 of gold phenylacetylide from the elements at T 298.15 K and p 101.325 kPa was calculated. The thermodynamic properties of gold phenylacetylide and related silver and copper compounds were compared.  相似文献   

13.
A high pressure flow-mixing isothermal calorimeter is used to determine the excess molar enthalpies of methylformate + (1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-pentanol) at T = 298.15 K and p = (5.0, 10.0) MPa, and methylformate + 1-propanol at T = 333.15 K and p = 10.0 MPa. The Redlich-Kister equation is fit to the experimental results.  相似文献   

14.
The temperature dependence of heat capacity C p o = f(T) of fullerene derivative (t-Bu)12C60 has been measured by a adiabatic vacuum calorimeter over the temperature range T = 6–350 K and by a differential scanning calorimeter over the temperature range T = 330–420 K for the first time. The low-temperature (T ≤ 50 K) dependence of the heat capacity was analyzed based on Debye’s the heat capacity theory of solids and its fractal variant. As a consequence, the conclusion about structure heterodynamicity is given. The experimental results have been used to calculate the standard thermodynamic functions C p o (T), H o(T)−H o(0), S o(T) and G o(T) − H o(0) over the range from T → 0 to 420 K. The standard entropy of formation at 298.15 K of fullerene derivative under study was calculated. The temperature of decomposition onset of derivative was determined by differential scanning calorimetery and thermogravimetric analysis. The standard thermodynamic characteristics of (t-Bu)12C60 and C60 fullerite were compared.  相似文献   

15.
The characteristics of epoxy/(Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 (BSTZ) composites are investigated for the further application in embedded capacitor device. The effects of BSTZ ceramic powder filler ratio on the chemical, physical and dielectric properties of epoxy/BSTZ composites are studied. Differential scanning calorimeter (DSC) thermal analysis is conducted to determine the optimum values of hardener agent, curing temperature, reaction heat, and glass transition temperature (Tg). The hardener reaction process starts at about 115 °C and completes at about 200 °C, for that it is appropriate to process of epoxy/BSTZ composites in the range of temperature. The highest glass transition temperature (Tg) of 155 °C is obtained at one equivalent weight ratio (hardener/epoxy). Only the BSTZ phase can be detected in the XRD patterns of epoxy/BSTZ composites. The more BSTZ ceramic powder is mixed with epoxy, the higher crystalline intensity of tetragonal BSTZ phase are revealed in the XRD patterns. The dielectric constant measured at 1 MHz increases from 5.8 to 23.6 as the content of BSTZ ceramic powder in the epoxy/BSTZ composites increases from 10 to 70 wt%. The loss tangents of the epoxy/BSTZ composites slightly increase with the increase of measurement frequency.  相似文献   

16.
The temperature dependence of the paramagnetic susceptibility χm(T) taken in 2500 Oe, the resistivity ρ(T), and the thermoelectric power α(T) of DyBaCo2O5+x, which has Ba and Dy ordered into alternate (001) planes of an oxygen-deficient perovskite, have revealed a phase segregation in the compositional range 0.3?x<0.5. Orthorhombic DyBaCo2O5.51 has, in addition, oxygen vacancies ordered into alternate rows of the DyO0.51 (001) planes; a cold-pressed polycrystalline sample exhibits a first-order insulator-metal transition at TIM=320 K, a Curie temperature TC=300 K, and a broadened metamagnetic transition temperature TM≈265 K in 2500 Oe. A ferromagnetic M-H hysteresis curve fails to saturate at 5 T, and a minority ferromagnetic phase below TM has a volume fraction that decreases with decreasing temperature, vanishing below 50 K. Oxygen vacancies in the DyBaCo2O5.5 phase suppress the metallic state; interstitial oxygen does not. A thermoelectric power α(T)>0 of DyBaCo2O5.51 changing continuously across TIM is interpreted to manifest a metallic minority phase crossing a percolation threshold; α(T) also provides evidence for a progressive excitation of higher-spin Co(III) with increasing temperature from below 50 K to above TIM. A previous model of the RBaCo2O5.5 phase is extended to account for the Ising spin configuration below TC, the magnetic order in the presence of higher-spin octahedral-site Co(III), and the α(T) data.  相似文献   

17.
In this research, thermodynamic properties of the ternary electrolyte system (MgCl2 + Mg(NO3)2 + H2O) were investigated using a potentiometric method. The galvanic cell used had no liquid junction of type: Mg-ISE|MgCl2 (mA), Mg(NO3)2 (mB), H2O|Ag/AgCl. The measurements were performed at T = 298.15 K and at total ionic strengths from 0.001 to 8.000 mol/kg for different series of salt ratios r=mMgCl2/mMg2(NO3) =1.00, 2.50, 5.00, 7.50, 10.00 and 15.00. The PVC based magnesium ion-selective electrode (Mg-ISE) and the Ag/AgCl electrode used in this work were prepared in our laboratory and showed a reasonably good Nernst response. The Pitzer ion interaction model and Harned rule were used to illustrate the ternary electrolyte system investigated. The experimental results showed that both Pitzer model and Harned rule were suitable to be used satisfactorily to describe this ternary system.  相似文献   

18.
The CaMnO3−x (x=0 and 0.02) mixed oxide was synthesized from both thermal treatment of the [CaMn(C3H2O4)2(H2O)4] metallo-organic precursor and ceramic method. In the case of the latter method, temperatures of 1350 °C and 50 h were necessary; however, lower temperatures, 800 °C, and shorter reaction times, 15 h, were utilized in the attainment of the mixed oxide from the precursor. As a consequence, the morphology of the different products is clearly different. The samples exhibit three-dimensional antiferromagnetic ordering with TN near 120 K, and a low-dimensional antiferromagnetic ordering at high temperatures. The presence of a ferromagnetic component above TN was also observed in both compounds, it is slightly stronger in the phase prepared by the ceramic route.  相似文献   

19.
The temperature dependence of heat capacity of C70 fullerene was studied by calorimetry in the range between 6 and 390 K. Phase transitions were established and their thermodynamic characteristics were determined. From the experimental data obtained, the thermodynamic functionsH o (T)-H o(0),S o(T),G o(T)-H o(0) for temperatures between 0 and 390 K were calculated. The results were used to calculate the standard values of Δf S o, Δf G o, and logK f o for the formation of C70 from graphite. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 647–650, April, 1998.  相似文献   

20.
The thermodynamic functions of complex formation of benzo-15-crown-5 ether with sodium cation in {(1 − x)DMA + xH2O} at T = 298.15 K have been calculated. The equilibrium constants of complex formation of benzo-15-crown-5 ether with sodium cation have been determined by conductivity measurements. The enthalpic effect of complex formation has been measured by calorimetric method at T = 298.15 K. The complexes are enthalpy stabilized and entropy destabilized. A simple model has been proposed to describe the relationship between the thermodynamic functions of complex formation of crown ethers with sodium cation and the structural and energetic properties of the mixed water-organic solvent. The linear enthalpy-entropy relationship for complex formation is also presented. The solvation enthalpy of the complex in {(1 − x)DMA + xH2O} is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号