首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A nano-sized mixed-ligand Cd(II) coordination polymer, {[Cd(bpa)(4,4′-bipy)2(H2O)2](ClO4)2}n (1); bpa = trans-1,2-bis(4-pyridyl)ethane and 4,4′-bipy = 4,4′-bipyridine, has been synthesized by a sonochemical method and characterized by IR and 1H NMR spectroscopy. Compound 1 grows in one dimension by two different bridging ligands, 4,4′-bipy and bpa. The thermal stability of compound 1 in the bulk form and nano-sized was studied by thermogravimetric (TG) and differential thermal analysis (DTA). The crystallinity of this compound was studied by X-ray powder diffraction and compared with an XRD simulation of the single crystal data. CdO nanoparticles were obtained by direct calcination at 500 °C and decomposition in oleic acid at 200 °C of the nano-sized compound 1. The obtained cadmium(II) oxide nano-particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

2.
A series of microcapsules filled with epoxy resins with poly(urea-formaldehyde) (PUF) shell were synthesized by in situ polymerization, and they were heat-treated for 2 h at 100 °C, 120 °C, 140 °C, 160 °C, 180 °C and 200 °C. The effects of surface morphology, wall shell thickness and diameter on the thermal stability of microcapsules were investigated. The chemical structure and surface morphology of microcapsules were investigated using Fourier-transform infrared spectroscope (FTIR) and scanning electron microscope (SEM), respectively. The thermal properties of microcapsules were investigated by thermogravimetric analysis (TGA and DTA) and by differential scanning calorimetry (DSC). The thermal damage mechanisms of microcapsules at lower temperature (<251 °C) are the diffusion of the core material out of the wall shell or the breakage of the wall shell owing to the mismatch of the thermal expansion of core and shell materials of microcapsules. The thermal damage mechanisms of microcapsules at higher temperature (>251 °C) are the decomposition of shell material and core materials. Increasing the wall shell thickness and surface compactness can enhance significantly the weight loss temperatures (Td) of microcapsules. The microcapsules with mean wall shell thickness of 30 ± 5 μm and smoother surface exhibit higher thermal stability and can maintain quite intact up to approximately 180 °C.  相似文献   

3.
In this work the thermal decomposition characteristics of micron sized aluminum powder + potassium perchlorate pyrotechnic systems were studied with thermal analytical techniques. The results show that the reactivity of aluminum powder in air increases as the particle size decreases. Pure aluminum with 5 μm particle size has a fusion temperature about 647 °C, but this temperature for 18 μm powder is 660 °C. Pure potassium perchlorate has an endothermic peak at 300 °C corresponding to a rhombic-cubic transition, a fusion temperature around 590 °C and decomposes at 592 °C. DTA curves for Al5/KClO4 (30:70) mixture show a maximum peak temperature for thermal decomposition at 400 °C. Increasing the particle size of aluminum powder increases the ignition temperature of the mixture. The oxidation temperature increased by enhance in the aluminum content of the mixture.  相似文献   

4.
A s-triazine containing hyperbranched polyamine (HBPA) has been synthesized from cyanuric chloride and aromatic diamine, 4,4′-(1,4-phenylenediisopropylidene) bis-aniline by nucleophilic displacement polymerization technique using an A2 + B3 approach with high yield (>80%). The synthesized polymer has been characterized by 1H NMR, 13C NMR, FT-IR spectroscopic studies, elemental analysis, solubility and measurement of solution viscosity. The thermogravimetric (TG) analysis and differential scanning calorimetric (DSC) studies indicate that the polymer is thermostable upto 290 °C without any decomposition and has glass transition temperature of 243 °C. The flame retardancy of the pure powder polymer and the blends with linear commercial polymers such as plasticized PVC and LDPE with this hyperbranched polymer were investigated by the measurement of limiting oxygen index (LOI) value. The results show that the polymer has self-extinguishing characteristic (LOI = 38) and acts as an effective flame retardant additive for the above linear base polymers. The synergistic effect of this hyperbranched flame retardant was observed with triphenyl phosphine oxide in the same base polymers. The flammability efficiency of the hyperbranched polyamine is also evaluated by help of thermogravimetric (TG) analysis. The heat aging and leaching in different chemical media did not influence the flame retardancy of the blends.  相似文献   

5.
Critical overview of literature data on the glass transition temperature Tg of poly(4-vinylphenol) PVPh revealed a large scatter of values ranging between 53 and 194 °C, which can only partially be attributed to molecular-mass effect. The reason could be seen in residual moisture and/or solvent in samples subjected to insufficient or even no drying. Based on selected two thirds of literature data, a regression equation is proposed for the dependence of Tg on 1/Mn. Two samples of commercial PVPh (Mn 11,500; Mw 22,100) and (Mn 19,700; Mw 40,900) were studied by DSC, ATR-FTIR, and SEC methods. A procedure of preparing well defined samples is proposed: PVPh vacuum-dried at 140 °C for 24 h is dissolved in tetrahydrofuran and precipitated in hexane. The precipitate is vacuum-dried at 40 °C for 24 h, weighed into a pierced DSC pan. After final vacuum drying at 140 °C for 24 h, the sample is analyzed. The PVPh samples treated in this way showed Tg of 175.0 °C and 179.6 °C, respectively.  相似文献   

6.
Potassium sodium strontium barium niobate (K0.2Na0.2Sr0.48Ba0.32Nb2O6, KNSBN) powder and thin films dip coated onto Si(100) substrates have been prepared by sol-gel route. The thermal evolution of these sol-gel derived KNSBN was studied by differential thermal analysis (DTA) and thermogravimetry (TG). Their structural changes at different annealing temperatures were examined by X-ray diffraction (XRD) and Raman spectroscopy. Our results suggest that the KNSBN tetragonal tungsten bronze (TTB) phase is formed via an intermediate orthorhombic phase. Pure TTB phase KNSBN was obtained at annealing temperatures of 1200°C and 600°C for powder and films respectively.  相似文献   

7.
A homogeneous and stoichiometric BaMgAl10O17:Eu2+ (BAM) phosphor powder has been prepared by the citrate route. Solubility isotherms have been calculated for metal-citric acid-water system at 25 °C to predict the optimum pH condition, which was found to be pH=7 for preparing pure and stable metal citrate complexes. Well crystallized and sub-micrometer-sized BAM particles could be obtained by thermal decomposition of the optimally prepared citrate precursor at a temperature as low as 1150 °C. Though the luminescent properties of the present samples under UV excitation well reflect the bulk properties, VUV excitation has exhibited the luminescent properties greatly influenced by the surface, which might be due to the fine particle. The maximum luminance of the samples heat treated at 1350 °C was 105% in comparison with that of the commercial BAM under VUV excitation.  相似文献   

8.
MgAl2O4 was successfully used as a crystalline host network for the synthesis of nickel-based nano cyan refractory ceramic pigments. Different compositions of NixMg1−xAl2O4 (0.1 ? x ? 0.8) powders have been prepared by using a low temperature combustion reaction (LTCR) of the corresponding metal nitrates with urea (U) as a fuel at 300 °C in an open air furnace. The as-synthesized samples were characterized by thermal analysis (TG-DTG/DTA), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). UV-Vis and diffuse reflectance spectroscopy (DRS) using CIE- Lab parameters methods have been used for color measurements. The results show that the NixMg1−xAl2O4 samples are the crystalline phase with a particle size of 8.85-43.66 nm in the temperature range 500-1200 °C. The density, particle size, shape and color are determined for all the prepared samples with different calcination times and temperatures.  相似文献   

9.
SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8 μm in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2 mmol L−1. The anatase and rutile phase in the SiO2/TiO2 composite microspheres began to form at 700 and 900 °C, respectively. At 700 °C, the specific surface area and pore volume of the SiO2/TiO2 composite microspheres were 552 and 0.652 mL g−1, respectively. However, at 900 °C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.  相似文献   

10.
Summary Titania-based photocatalytic materials were prepared by sol-gel method using Fe3+ and polyethyleneglycol (PEG600) as additives. Thermogravimetry (TG), differential thermal analysis (DTA) and evolved gas analysis (EGA) with MS detection were used to elucidate processes that take place during heating of Fe3+ containing titania gels. The microstructure development of the Fe2O3/TiO2 gel samples with and without PEG600 admixtures was characterized by emanation thermal analysis (ETA) under in situ heating in air. A mathematical model was used for the evaluation of ETA results. Surface area and porosity measurements of the samples dried at 120&deg;C and the samples preheated for 1 h to 300 and 500&deg;C were compared. From the XRD measurements it was confirmed that the crystallization of anatase took place after thermal heating up to 600&deg;C.  相似文献   

11.
The thermal decomposition of solid samples of iron(VI) oxides, K2FeO4·0.088 H2O (1) and BaFeO4·0.25H2O (2) in inert atmosphere has been examined using simultaneous thermogravimetry and differential thermal analysis (TG/DTA), in combination with in situ analysis of the evolved gases by online coupled mass spectrometer (EGA-MS). The final decomposition products were characterized by 57Fe Mössbauer spectroscopy. Water molecules were released first, followed by a distinct decomposition step with endothermic DTA peak of 1 and 2 at 273 and 248 °C, respectively, corresponding to the evolution of molecular oxygen as confirmed by EGA-MS. The released amounts of O2 were determined as 0.42 and 0.52 mol pro formula of 1 and 2, respectively. The decomposition product of K2FeO4 at 250 °C was determined as Fe(III) species in the form of KFeO2. Formation of an amorphous mixture of superoxide, peroxide, and oxide of potassium may be other products of the thermal conversion of iron(VI) oxide 1 to account for less than expected released oxygen. The thermogravimetric and Mössbauer data suggest that barium iron perovskite with the intermediate valence state of iron (between III and IV) was the product of thermal decomposition of iron(VI) oxide 2.  相似文献   

12.
The effect of grinding on thermal behavior of pyrophyllite and talc as commonly used ceramic clay minerals was investigated by DTA, TG, emanation thermal analysis (ETA), B.E.T. surface area (s.a.) measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM). A vibratory mill was used in this study, grinding time was 5 min. It was found that the grinding caused an increase in surface area and a grain size reduction of the samples. From TG and DTA results it followed that grinding caused a decrease of the temperature at which the structure bound OH groups released. The formation of high temperature phases was enhanced with the ground samples. For the ground talc sample the crystallization of non-crystalline phase into orthorhombic enstatite was observed in the range of 800°C. For ground pyrophyllite a certain agglomeration of grains was observed in the range above 950°C. Moreover, for both clays the ETA characterized a closing up of subsurface irregularities caused by grinding as a decrease of the emanation rate in the range 250–400°C. The comparison of thermal analysis results with the results of other methods made it possible to better understand the effect of grinding on the ceramic clays.  相似文献   

13.
The new potassium cerium(III) phosphate of formula K4Ce2P4O15 in the system Ce2O3-K2O-P2O5 was prepared by solid state reactions and characterized by thermal analysis (DTA, TG, DSC), powder X-ray diffraction and IR spectroscopy. This compound exists only in the solid state (below 880 °C) and exhibits a polymorphic transition at 527 °C. The low-temperature form β-K4Ce2P4O15 of this compound crystallizes as a triclinic phase (space group P) with unit cell parameters: a=9.319(7), b=12.129(3), c=9.252(1) Å, α=106.875, β=100.086, γ=107.202°, V=916.276 Å3.  相似文献   

14.
Low temperature routes have been developed for the preparation of BaCe0.9Y0.1O2.95 (BCY10) and BaZr0.9Y0.1O2.95 (BZY10) in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell. These methods make use on the one hand of the chelation of metal (II), (III) and (IV) ions by acrylates (hydrogelation route) and on the other of the destabilisation and precipitation of micro-emulsions. Both routes lead to single phase yttrium doped barium cerate or zirconate perovskites, as observed by X-ray diffraction, after thermal treatment at 900 °C for 4 h for BCY10 and 800 °C for BZY10. These temperatures, lower than those usually used for preparation of barium cerate or zirconate, lead to oxide nanoparticles of size <40 nm. Dense ceramics (?95%) are obtained by sintering BCY10 pellets at 1350 °C and BZY10 pellets at 1500 °C for 10 h. The water uptake of compacted samples at 500 °C is 0.14 wt% for BCY10 and 0.26 wt% for BZY10. Total conductivities in the range 300-600 °C were determined using impedance spectroscopy in a humidified nitrogen atmosphere. The total conductivity was 1.8×10−2 S/cm for BCY10 and 2×10−3 S/cm for BZY10 at 600 °C. The smallest perovskite nanoparticles and highest conductivities were obtained by hydrogelation of precursor barium, zirconium, cerium and yttrium acrylates.  相似文献   

15.
A series of 4-(2-phenylethynyl)-1,8-naphthalic anhydride (PENA) endcapped imide oligomers with different chemical backbones and calculated number average molecular weights (Calc’d Mn) were successfully synthesized and characterized. The PENA-endcapped imide oligomers were mixtures of mono- and double-endcapped imide oligomers with polymerization degree (Pn) of 1-5 and number average molecular weights (Mn) of 2515-3851 g/mol. determined by GPC. Study on effect of chemical structures on the curing behaviors of two model compounds: PENA-m based on PENA and PEPA-m derived from 4-phenylethynylphthalic anhydride (PEPA) revealed that PENA-m showed the cure temperature of 50 °C lower than PEPA-m and the activity energy of thermal curing reaction for PENA-m was also lower than that of PEPA-m. The PENA-endcapped imide oligomers could be melt at temperatures of >250 °C with the minimum melt viscosity of 1.2-230 Pa s at 275-301 °C and the widen melt processing windows, along with 10-40 °C lower cure temperature than the PEPA-endcapped analogue.The PENA-endcapped imide oligomers could be thermally cured at 350 °C/1 h to afford the thermally cured polyimides with good combined thermal and mechanical properties including Tg of 344-397 °C (DMA), Td of 443-513 °C, tensile strength of as high as 54.7 MPa, flexural strength of as high as 126.1 MPa and modulus of as high as 2.3 GPa, respectively.  相似文献   

16.
This study deals with the reduction of Fe3O4 by H2 in the temperature range of 210-950 °C. Two samples of Fe3O4 produced at 600 and 1200 °C, designated as Fe3O4(600) and Fe3O4(1200), have been used as starting material.Reduction of Fe3O4(600) by H2 is characterized by an apparent activation energy ‘Ea’ of 200, 71 and 44 kJ/mol at T < 250 °C, 250 °C < T < 390 °C and T > 390 °C, respectively. The important change of Ea at 250 °C could be attributed to the removal of hydroxyl group and/or point defects of magnetite. This is confirmed during the reduction of Fe3O4(1200). While transition at T ≈ 390 °C is probably due to sintering of the reaction products as revealed by SEM.In situ X-rays diffraction reduction experiments confirm the formation of stoichiometric FeO between 390 and 570 °C. At higher temperatures, non-stoichiometric wüstite is the intermediate product of the reduction of Fe3O4 to Fe.The physical and chemical modifications of the reduction products at about 400 °C, had been confirmed by the reduction of Fe3O4(600) by CO and that of Fe3O4(1200) by H2. A minimum reaction rate had been observed during the reduction of Fe3O4(1200) at about 760 °C. Mathematical modeling of experimental data suggests that the reaction rate is controlled by diffusion and SEM observations confirm the sintering of the reaction products.Finally, one may underline that the rate of reduction of Fe3O4 with H2 is systematically higher than that obtained by CO in the explored temperature range.  相似文献   

17.
18.
Ni containing layered double hydroxides (LDHs) have been prepared by precipitation and hydrothermally treated under microwave irradiation for different periods of time. The solids have been calcined at three temperatures corresponding to stable phases formed during thermal decomposition of LDHs. The properties of the irradiated samples and of the calcined products were studied in order to ascertain whether the ageing treatment under microwave irradiation modifies not only the properties of the layered materials, but also the properties of the calcined products. A structural and textural study was carried out by PXRD, FT-IR and Vis-UV spectroscopy, thermal analyses (DTA and TG), N2 adsorption/desorption at −196 °C and TEM microscopy; the reducibility of the nickel species was studied as well by TPR. The results show that the microwave treatment leads to better crystallized LDHs with modified thermal stability and reducibility. In addition, the degree of crystallinity of the layered precursors and their textural properties determine the properties of their thermal decomposition products.  相似文献   

19.
Synthetic zeolite ZSM5 and its copper forms containing N,N-dimethylethylenediamine (dmen) have been investigated by CHN, energy dispersive spectroscopy (EDS) analysis, X-ray powder diffractometry, X-ray photoelectron spectroscopy and continuous waves hydrogen nuclear magnetic resonance (CW 1H NMR) spectroscopy. Thermal properties have been studied by methods of thermal analysis—TG, DTA and DTG in the temperature range 20-1000 °C in air atmosphere. Mass spectroscopy method was used for the study of the released gas products of thermal decomposition.The results of thermal analyses of two zeolitic samples Cu-ZSM5 and Cu(dmen)xZSM5 (x depends on the mode of preparation) demonstrated their different thermal properties. The main part of the decomposition process of the samples Cu(dmen)xZSM5 occurs at considerably higher temperatures than the boiling point of dimethylethylenediamine, proving strong bond and irreversibility of dmen-zeolite interaction. According to the results of mass spectroscopy the decomposition process in inert atmosphere is characterized by the development of a large spectrum of products with atomic mass from 18 to 447 atomic mass units as a consequence of the catalytic effect of the silicate surface.  相似文献   

20.
The thermal behaviour of commercial Carbolex single-walled carbon nanotubes (SWCNTs) both as-received and after purification by a novel method has been studied by thermogravimetric/derivative thermogravimetric/difference thermal analysis (TG/DTG/DTA). Purification from metal catalysts (Ni and Y) has been successfully obtained using 0.1 M I2 in iso-propanol instead of the usual concentrated HNO3. The final residues of thermal analysis have been characterised by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The gathered results showed that the as-received SWCNTs burns out in a one-step between 573 and 923 K, whereas the SWCNTs treated with HNO3 become highly hygroscopic. The I2-iso-propanol-treated SWCNTs showed three overlapped exothermic peaks between 500 and 973 K in the DTA curve, which allowed separating amorphous carbon from SWCNTs by air-thermal treatment at 573 K. The graphite-like compounds, which are present in both untreated and treated SWCNTs, does not burn up to 1173 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号