首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of piperdin-2-ones with a 2-bromobenzyl substituent in the 5-position in the presence of a palladium catalyst leads to biaryl compounds. Their formation can be explained via initial C-H insertion of the aryl palladium species into the allylic C-H bond of the piperidinone. This eventually leads to a metallacycle containing Pd(II) that inserts another aryl bromide, promoting the formation of the biaryl bond.  相似文献   

2.
Gold(I)‐chloride‐catalyzed synthesis of α‐sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols showed a wide substrate scope with respect to both propargylic alcohols and aryl thiols. Primary and secondary aromatic propargylic alcohols generated α‐sulfenylated aldehydes and ketones in 60–97 % yield. Secondary aliphatic propargylic alcohols generated α‐sulfenylated ketones in yields of 47–71 %. Different gold sources and ligand effects were studied, and it was shown that gold(I) chloride gave the highest product yields. Experimental and theoretical studies demonstrated that the reaction proceeds in two separate steps. A sulfenylated allylic alcohol, generated by initial regioselective attack of the aryl thiol on the triple bond of the propargylic alcohol, was isolated, evaluated, and found to be an intermediate in the reaction. Deuterium labeling experiments showed that the protons from the propargylic alcohol and aryl thiol were transferred to the 3‐position, and that the hydride from the alcohol was transferred to the 2‐position of the product. Density functional theory (DFT) calculations showed that the observed regioselectivity of the aryl thiol attack towards the 2‐position of propargylic alcohol was determined by a low‐energy, five‐membered cyclic protodeauration transition state instead of the strained, four‐membered cyclic transition state found for attack at the 3‐position. Experimental data and DFT calculations supported that the second step of the reaction is initiated by protonation of the double bond of the sulfenylated allylic alcohol with a proton donor coordinated to gold(I) chloride. This in turn allows for a 1,2‐hydride shift, generating the final product of the reaction.  相似文献   

3.
N-Aryl indoline-type aminophosphines 1a-c were obtained in good yields by a nucleophilic aromatic substitution (S(N)Ar) reaction followed by silane reduction. Aminophosphine 1d was also prepared from 2,3-difluorobenzaldehyde (4) via dimethylhydrazone. Optical resolution of C(aryl)-N(amine) bond atropisomers was achieved using (S)-(+)-di-mu-chlorobis[2-[(dimethylamino)ethyl]phenyl-C(2),N]dipalladium(II) ((S)-10). The determination of absolute configuration and the investigation of the rotation barrier for C(aryl)-N(amine) bond axial stability of an aminophosphine 1 are described. Finally, the ability of the chiral phosphine ligand 1 is demonstrated in a catalytic asymmetric reaction, such as a palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate (up to 95% ee).  相似文献   

4.
Iridium-catalyzed hydroarylation of alkenyl ethers, such as allylic and homoallylic ethers, by C−H bond activation gave high yields of the corresponding addition products, where the aryl groups were selectively installed at the α-carbon atom to the alkoxy group. The reaction involves an isomerization of the alkenyl ethers into the corresponding 1-alkenyl ethers, which then undergo the regio- and enantioselective hydroarylation.  相似文献   

5.
Instantaneous catalytic carbon–carbon bond‐forming reactions were achieved in catalytic membrane‐installed microchannel devices that have a polymeric palladium‐complex membrane. The catalytic membrane‐installed microchannel devices were provided inside the microchannels by means of coordinative and ionic molecular convolution at the interface between the organic and aqueous phases flowing laminarly, in which both non‐crosslinked linear polymer ligands and palladium species dissolved. The palladium‐catalyzed Suzuki–Miyaura reaction of aryl, heteroaryl, and alkenyl halides with arylboronic acids and sodium tetraarylborates was performed with the catalytic membrane‐installed microchannel devices to give quantitative yields of biaryls, heterobiaryls, and aryl alkenes within 5 s of residence time in the defined channel region. These microchannel devices were applied to the instantaneous allylic arylation reaction of allylic esters with arylboron reagents under microflow conditions to afford the corresponding coupling products within 1 s of residence time.  相似文献   

6.
Iridium‐catalyzed hydroarylation of alkenyl ethers, such as allylic and homoallylic ethers, by C−H bond activation gave high yields of the corresponding addition products, where the aryl groups were selectively installed at the α‐carbon atom to the alkoxy group. The reaction involves an isomerization of the alkenyl ethers into the corresponding 1‐alkenyl ethers, which then undergo the regio‐ and enantioselective hydroarylation.  相似文献   

7.
The palladium-catalyzed cross-coupling of readily available N-tert-butyl-2-(1-alkynyl)benzaldimines and aryl, allylic, benzylic, alkynyl halides, as well as a vinylic halide, provides a valuable new route to 3,4-disubstituted isoquinolines with aryl, allylic, benzylic, 1-alkynyl, and vinylic substituents, respectively, in the 4-position. The reaction appears to require an aryl group on the end of the acetylene furthest from the imine functionality. The reaction conditions have been optimized, and reasonably good yields have been obtained.  相似文献   

8.
Nickel-catalyzed reductive cross-coupling of allylic difluorides with aryl iodides was achieved via allylic C−F bond activation. Based on this protocol, a series of γ-arylated monofluoroalkenes were synthesized in moderate to high yields with high Z-selectivities. Mechanistic studies suggest that the C−I bonds of the aryl iodides and the C−F bonds of the allylic difluorides were cleaved via oxidative addition and β-fluorine elimination, respectively, where the oxidative addition of less reactive C−F bonds was avoided to permit their transformation.  相似文献   

9.
Reaction of phosgene with cyclohexylidene amines gives good yields of (1-eyclohexen-l-yl)-carbamoyl chlorides ( 1 ). Compound 1 can be converted to the corresponding eneearbamoyl azide ( 2 ), which on pyrolysis gives an improved synthesis of 1-substituted-4,5,6,7-tetrahydro-3-indazolinones ( 7 ). When 1 is substituted by an allylic rather than alkyl or aryl group, the major products are 4-imidazolin-2-ones ( 8 ) accompanied by only minor amounts of 7 . The thermolysis reaction has been extended to N-allylcarbamoyl azides in general, thus providing a new and facile synthesis for 1,4-disubstituted 4-imidazolin-2-ones (9). A tentative mechanism is advanced, involving intermediate azide addition to the allylic double bond.  相似文献   

10.
A metal‐free tandem procedure by using a sulfonylation reaction of aryl allylic alcohols followed by an iodobenzenediacetate (PIDA)‐promoted oxidative functionalization has been established. Allylic sulfones, γ‐ketosulfones, and triflyl allylic alcohols have been constructed in a single operation. The methodology incorporates the sulfonyl (both aryl and triflyl) functionality with a simple work‐up procedure.  相似文献   

11.
Jonathan A. Fritz 《Tetrahedron》2008,64(29):6838-6852
A method for the synthesis of imidazolidin-2-ones from N-allylureas and aryl or alkenyl bromides via Pd-catalyzed carboamination reactions is described. The N-allylurea precursors are prepared in one step from readily available allylic amines and isocyanates, and the Pd-catalyzed reactions effect the formation of a C-C bond, a C-N bond, and up to two stereocenters in a single step. Good diastereoselectivities are obtained for the conversion of substrates bearing allylic substituents to 4,5-disubstituted imidazolidin-2-ones, and excellent selectivity for the generation of products resulting from syn-addition across the alkene is observed when substrates derived from cyclic alkenes or E-1,2-disubstituted alkenes are employed. A brief discussion of reaction mechanism and product stereochemistry is presented.  相似文献   

12.
The palladium-catalyzed reaction of pinacolone with tert-butyldimethyl(3-(2-bromophenyl)allyloxy)silane results in direct formation of 1-vinyl-3-tert-butyl-1H-isochromene. This is the result of a ketone arylation followed by an intramolecular cyclization of the enolate with the allylic system. The use of a lithium diamide base appears to be essential for success. The tert-butyldimethylsilyl protecting group is also an essential choice as it furnishes the appropriate reactivity to promote allylic substitution after the aryl coupling process. The use of more effective leaving groups, such as acetate, results in reaction of the allylic group, and no aryl coupling is observed. Through the appropriate selection of phosphine ligand and solvent, either the cyclized isochromene product or the noncyclized intermediate may be formed selectively. A short combinatorial study of the scope and limitations of the reaction, involving 24 ketones, is described.  相似文献   

13.
[reaction: see text] The cobalt-catalyzed coupling reaction of aromatic halides and allylic acetates proceeds readily under mild conditions in the presence of the appropriate reducing agent to produce allylaromatic derivatives either in pure acetonitrile (aryl bromides) or in an acetonitrile/pyridine mixture (aryl chlorides).  相似文献   

14.
An efficient and practical synthesis of α-phenylthio ketone through gold-catalyzed intermolecular oxidation of phenylacetylene and substituted aryl(benzyl) allylic sulfides was developed. The reaction scope is fairly good with substituted aryl(benzyl) allylic sulfides, tolerating various functional groups, and the reaction affords the yields of 63%—85%.  相似文献   

15.
The first example of a biocatalytic [2,3]‐sigmatropic rearrangement reaction involving allylic sulfides and diazo reagents (Doyle–Kirmse reaction) is reported. Engineered variants of sperm whale myoglobin catalyze this synthetically valuable C?C bond‐forming transformation with high efficiency and product conversions across a variety of sulfide substrates (e.g., aryl‐, benzyl‐, and alkyl‐substituted allylic sulfides) and α‐diazo esters. Moreover, the scope of this myoglobin‐mediated transformation could be extended to the conversion of propargylic sulfides to give substituted allenes. Active‐site mutations proved effective in enhancing the catalytic efficiency of the hemoprotein in these reactions as well as modulating the enantioselectivity, resulting in the identification of the myoglobin variant Mb(L29S,H64V,V68F), which is capable of mediating asymmetric Doyle–Kirmse reactions with an enantiomeric excess up to 71 %. This work extends the toolbox of currently available biocatalytic strategies for the asymmetric formation of carbon–carbon bonds.  相似文献   

16.
A direct method for preparing 2,3-epoxyamides from tertiary allylamines via a tandem C-H oxidation/double bond epoxidation using sodium chlorite is reported. Apparently, the reaction course consists of two steps: (i) allylic oxidation of the starting allylamine to corresponding unsaturated allylamide with sodium chlorite followed by (ii) epoxidation of the allylamide to the 2,3-epoxyamide mediated by hypochlorite ion, which is formed in situ by reduction of sodium chlorite. The reaction conditions tolerate the presence of free hydroxyl groups and typical functional groups such as TBS, aryl, alkyl, allyl, acetyl, and benzyl groups; however, when an activated aromatic ring (e.g., sesamol) is present in the substrate, the use of a scavenger is necessary.  相似文献   

17.
An efficient protocol for the direct allylic C(sp3)?H bond activation of unactivated tri‐ and tetrasubstituted alkenes and their functionalization with aryl‐ and vinylbromides by nickel and visible‐light photocatalysis has been developed. The method allows C(sp2)?C(sp3) formation under mild reaction conditions with good functional‐group tolerance and excellent regioselectivity.  相似文献   

18.
Huang D  Wang H  Guan H  Huang H  Shi Y 《Organic letters》2011,13(6):1548-1551
A mild acid-catalyzed formal allylic C-H oxidation of aryl cycloalkenes with N-propylthiosuccinimide in the presence of various nucleophiles to generate allylic ethers, esters, and sulfonamides is described. A possible reaction mechanism has been proposed.  相似文献   

19.
An enantioselective and regioselective iridium-catalyzed allylic etherification is described. The reaction of sodium and lithium aryloxides with achiral (E)-cinnamyl and terminal aliphatic allylic electrophiles in the presence of 2 mol % of an iridium-phosphoramidite complex provides chiral allylic aryl ethers in high yields and excellent levels of regio- and enantioselectivity. Lithium aryloxides containing a single substituent at an ortho, meta, or para position as well as sterically hindered phenoxides were tolerated. Reactions in THF displayed the most suitable balance of rate, regio-, and enantioselectivity. High ee's were also observed for the products from the reaction of alkyl (E)-allylic carbonates.  相似文献   

20.
Metalloenzymes are essential proteins with vital activity that promote high-efficiency enzymatic reactions. To ensure catalytic activity, stability, and reusability for safe, nontoxic, sustainable chemistry, and green organic synthesis, it is important to develop metalloenzyme-inspired polymer-supported metal catalysts. Here, we present a highly active, reusable, self-assembled catalyst of poly(imidazole-acrylamide) and palladium species inspired by metalloenzymes and apply our convolution methodology to the preparation of polymeric metal catalysts. Thus, a metalloenzyme-inspired polymeric imidazole Pd catalyst (MEPI-Pd) was readily prepared by the coordinative convolution of (NH(4))(2)PdCl(4) and poly[(N-vinylimidazole)-co-(N-isopropylacrylamide)(5)] in a methanol-water solution at 80 °C for 30 min. SEM observation revealed that MEPI-Pd has a globular-aggregated, self-assembled structure. TEM observation and XPS and EDX analyses indicated that PdCl(2) and Pd(0) nanoparticles were uniformly dispersed in MEPI-Pd. MEPI-Pd was utilized for the allylic arylation/alkenylation/vinylation of allylic esters and carbonates with aryl/alkenylboronic acids, vinylboronic acid esters, and tetraaryl borates. Even 0.8-40 mol ppm Pd of MEPI-Pd efficiently promoted allylic arylation/alkenylation/vinylation in alcohol and/or water with a catalytic turnover number (TON) of 20,000-1,250,000. Furthermore, MEPI-Pd efficiently promoted the Suzuki-Miyaura reaction of a variety of inactivated aryl chlorides as well as aryl bromides and iodides in water with a TON of up to 3,570,000. MEPI-Pd was reused for the allylic arylation and Suzuki-Miyaura reaction of an aryl chloride without loss of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号