首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fourier-transform Raman (FT-Raman), infrared (FT-IR), and UV-visible absorption spectra of four dipyrrinones and two mesobilirubins have been investigated in the solid state and in CH2Cl2 solutions. A detailed spectral analysis, assignment and discussion of these spectra are presented. The bands at 1735-1738, 1691-1707 and 1359-1377 cm(-1) which were assigned to the stretching vibrations of the C-O-C and C-O-H and symmetric deformation of C-H bonds, respectively, can act as a marker to distinguish the compounds of this class. The striking differences between the spectra of the compounds suggest that mesobilirubin XIIIalpha is tending to adopt as ridge-tile conformation, rather than linear conformation.  相似文献   

2.
The application of Fourier-transform (FT)-Raman spectroscopy to the non-destructive analysis of plant biomaterials, comprising ten different waxes, is illustrated in this work. All the wax specimens studied are multicomponent systems and comparison of the individual spectra was effected. This leads to a means of distinguishing the individual wax specimen using FT-Raman spectroscopy. The samples were not pre-treated before analysis and were used directly from their respective storage collections.  相似文献   

3.
Endospores and endospore-forming bacteria were studied by Raman spectroscopy. Raman spectra were recorded from Bacillus licheniformis LMG 7634 at different steps during growth and spore formation, and from spore suspensions obtained from diverse Bacillus and Paenibacillus strains cultured in different conditions (growth media, temperature, peroxide treatment). Raman bands of calcium dipicolinate and amino acids such as phenylalanine and tyrosine are more intense in the spectra of sporulating bacteria compared with those of bacteria from earlier phases of growth. Raman spectroscopy can thus be used to detect sporulation of cells by a characteristic band at 1,018 cm–1 from calcium dipicolinate. The increase in amino acids could possibly be explained by the formation of small acid-soluble proteins that saturate the endospore DNA. Large variations in Raman spectra of endospore suspensions of different strains or different culturing conditions were observed. Next to calcium dipicolinate, tyrosine and phenylalanine, band differences at 527 and 638 cm–1 were observed in the spectra of some of the B. sporothermodurans spore suspensions. These bands were assigned to the incorporation of cysteine residues in spore coat proteins. In conclusion, Raman spectroscopy is a fast technique to provide useful information about several spore components. Figure A difference spectrum between Raman spectra of B. licheniformis LMG 7634 cultured for 6 days and 1 day, together with the reference Raman spectrum of calcium dipicolinate  相似文献   

4.
Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. Humboldtine as the natural iron(II) oxalate mineral is a classic example. Thermogravimetry coupled to evolved gas mass spectrometry shows dehydration takes place in two steps at 130 and 141°C. Loss of the oxalate as carbon dioxide occurs at 312 and 332°C. Dehydration is readily followed by Raman microscopy in combination with a thermal stage and is observed by the loss of intensity of the OH stretching vibration at 3318 cm-1. The application of infrared emission spectroscopy supports the results of the TG-MS. Three Raman bands are observed at 1470, 1465 and 1432 cm-1 attributed the CO symmetric stretching mode. The observation of the three bands supports the concept of multiple iron(II) oxalate phases. The significance of this work rests with the ability of Raman spectroscopy to identify iron(II) oxalate which often occurs as a film on a host rock.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
Calcium oxalate can be found in humans as kidney stones and in cultural heritage as films in two crystallographic species, dihydrate (COD/weddellite) and/or monohydrate (COM/whewellite). Due to its instability, COD is transformed into COM. Studying this crystalline conversion provides information about the origin of the monohydrated species, which will help in the assessment of prevention measurements to avoid their formation. In the present study, the synthesis of calcium oxalate hydrate microcrystals has been carefully performed to avoid mixture of phases in the final products; the long and short range order structure of both species have been studied by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS), respectively. This structural information was considered in the density functional theory (DFT) computational study performed to assign the characteristic vibrational IR and Raman frequencies found. This detailed characterization allows an unambiguous assignment of the vibrations, thus providing the appropriate parameters required to monitor and characterize the transformation process.  相似文献   

6.
A laueite mineral sample from Lavra Da Ilha, Minas Gerais, Brazil has been studied by vibrational spectroscopy and scanning electron microscopy with EDX. Chemical formula calculated on the basis of semi-quantitative chemical analysis can be expressed as (Mn2+0.85,Fe2+0.10Mg0.05)∑1.00(Fe3+1.90,Al0.10)∑2.00(PO4)2(OH)2·8H2O.The laueite structure is based on an infinite chains of vertex-linked oxygen octahedra, with Fe3+ occupying the octahedral centers, the chain oriented parallel to the c-axis and linked by PO4 groups. Consequentially not all phosphate units are identical. Two intense Raman bands observed at 980 and 1045 cm−1 are assigned to the ν1 PO43− symmetric stretching mode. Intense Raman bands are observed at 525 and 551 cm−1 with a shoulder at 542 cm−1 are assigned to the ν4 out of plane bending modes of the PO43−. The observation of multiple bands supports the concept of non-equivalent phosphate units in the structure. Intense Raman bands are observed at 3379 and 3478 cm−1 and are attributed to the OH stretching vibrations of the hydroxyl units. Intense broad infrared bands are observed. Vibrational spectroscopy enables subtle details of the molecular structure of laueite to be determined.  相似文献   

7.
Raman spectroscopic studies of four specimens from an important angel wall painting in need of conservation work in a medieval church have provided some information about the pigments and pigment compositions which will influence possible future preservation and restoration strategies. Excitation of the Raman spectra at 1,064 nm in macroscopic mode and at 785 nm in microscopic mode revealed that the white pigment on the angel's wings was a mixture of barytes with calcite and lead white in minor composition. Although the specimens provided were not directly associated with coloured regions of the painting, yellow and blue microcrystals were found and they were identified as chrome yellow and lazurite, respectively. Red and brown particles were identified as cinnabar/vermilion and haematite. Several green particles were also found but could not be identified. The green and blue crystals could be related to neighbouring coloured regions of the artwork and the yellow colour could be identified as a background to the angel figure. Particles of carbon were found to be dispersed throughout the specimens and can be ascribed to soot from candles, heating stoves or oil lamps providing lighting in the church. No evidence for biological deterioration was found from the spectra. The unusual pigment palette is strongly suggestive of a later date of painting than was originally believed but there is a possibility that an earlier rendition exists underneath. Following a review of the spectroscopic data, a more extensive sampling protocol is recommended, from which some stratigraphic evidence could identify the underlying plaster and possible artwork.  相似文献   

8.
Raman spectroscopy complimented with supplementary infrared spectroscopy has been used to characterise the vibrational spectrum of aurichalcite a zinc/copper hydroxy carbonate (Zn,Cu2+)5(CO3)2(OH)6. XRD patterns of all specimens show high orientation and indicate the presence of some impurities such as rosasite and hydrozincite. However, the diffraction patterns for all samples are well correlated to the standard reference patterns. SEM images show highly crystalline and ordered structures in the form of micron long fibres and plates. EDAX analyses indicate variations in chemical composition of Cu/Zn ratios ranging from 1/1.06 to 1/2.87. The symmetry of the carbonate anion in aurichalcite is Cs and is composition dependent. This symmetry reduction results in multiple bands in both the symmetric stretching and bending regions. The intense band at 1072 cm−1 is assigned to the ν1(CO3)2− symmetric stretching mode. Three Raman bands assigned to the ν3(CO3)2− antisymmetric stretching modes are observed for aurichalcite at 1506, 1485 and 1337 cm−1. Multiple Raman bands are observed in 800–850 cm−1 and 720–750 cm−1 regions and are attributed to ν2 and ν4 bending modes confirming the reduction of the carbonate anion symmetry in the aurichalcite structure. An intense Raman band at 1060 cm−1 is attributed to the δ OH deformation mode.  相似文献   

9.
The non-destructive Raman spectroscopic analysis of a range of ancient Egyptian funerary artefacts has been undertaken with a view to establish the identification of the pigment composition and nature of the interaction with the substrate. The specimens date from the New Kingdom to the Graeco-Roman period, ca. 3900-1800 years b.p. In this study a comparison has also been effected between the near-infrared and red excitation wavelengths for the characterisation of these materials. A particular problem for Raman analysis of these artefacts was found in the application of resin or organic compounds to the surface or substrata, as colourants or to aid adhesion of the pigments, and degradation of the resins with burial environment and exposure has resulted in large fluorescent backgrounds. Nevertheless, useful information has been obtained which assists in the interpretation of the construction of some of the artefacts.  相似文献   

10.
The crosslinking of functionalized polystyrene resins is often of critical importance in determining resin properties and performance in the application of these materials as membranes and supports. In this investigation model systems are developed for quantifying the infrared and Raman spectroscopic properties of copolymers based on poly(styrene‐co‐divinylbenzene). Analytical curves appropriate for the quantification of para‐ and metasubstituted species and pendant double bonds are reported, and corrections to previously reported spectroscopic assignments and analytical methods are made. The usefulness of these two analytical methods in characterizing radiation‐grafted films and commercial copolymers is compared, and typical characterization results are given. The relative concentrations of the species found in the grafted films are quite different from their concentrations in the grafting solution, and empirical relationships between the two are developed. In addition, the graft composition varies as a function of the base polymer film thickness and type and the penetration depth in the grafted film. Radiation‐grafted films are more highly crosslinked in their near surface regions, and thinner films are more extensively crosslinked. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 59–75, 2004  相似文献   

11.
Polyanilines doped with (HCl+KCl) and (HCl+CoCl2) were prepared by co-doping method, respectively. For comparison, polyaniline emeraldine salt (ES) by doping with HCl and its emeraldine base (EB) form were also synthesized. The co-doped polyanilines, ES and EB samples were all characterized by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy aiming to understand the transformations in the different doping status. The results show that the doping degree of K+ ions is considerably higher than that of Co2+ ions under the same co-doping conditions possibly due to different pseudoprotonation constants of EB with K+ ions and Co2+ ions. Moreover, morphology difference of polyaniline co-doped with alkaline metal ions or transition meal ions may arise from different coordination geometry of metal ions. Nevertheless, there are similar chemical transformations of quinoid units to benzenoid ones on polyaniline backbones for the ES and both co-doped samples. And the polyaniline backbones co-doped with H+ and metal cations are found to attain weaker charge delocalization than the ES which is doped solely with H+.  相似文献   

12.
An early church decoration project carried out by Sir Ninian Comper in 1896–98, involving the rood screen and canopy in St. Mary’s, Egmanton, is currently undergoing restoration. Despite the rather prolific works of this famous ecclesiastical architect, there is little information available about the actual pigments that he used in his projects that gave rise to the special nomenclature “Comper green” and “Comper red”. Specimens of green, red, black, grey, white and blue paint from this work have been made available for Raman spectroscopic analysis, and their identification has been achieved for the first time. The characteristic red and green pigments used in Comper’s work, Comper green and Comper red, are both seen to be mixtures; in the former, Raman bands from chrome yellow (lead(II) chromate) and Prussian blue are identified, and the latter is confirmed as being a mixture of vermilion (mercury(II) sulfide) and barytes (barium sulfate). The other colours are found to represent a rich diversity of palette and include haematite, lead tin yellow (type II), lamp black, gypsum, anhydrite, hydrocerussite and calcite. The information from this first Raman spectroscopic study of Comper’s palette will assist the conservation and restoration of an important nineteenth century church decoration.  相似文献   

13.
A drug (5-FU) was employed to treat the gastric carcinoma cells and induce apoptosis of the cancer cells. Raman spectra obtained from single gastric carcinoma cells and the induced apoptotic cells through scan-excitation mode were used to analyze the effectiveness of the treatment. The major difference of the apoptotic cells from the cancer cells are the reduction in intensities of vibration bands generated by cellular lipids, proteins and nucleic acids. In particular, large intensity reduction in nucleic vibrations at 782, 1092, 1320, 1340, and 1578 cm−1 was observed upon apoptosis of the gastric carcinoma cells. Up to 45% reduction in the magnitude of the 782 cm−1 peak in Raman spectra of the apoptotic cells was observed, which suggests the breakdown of phosphodiester bonds and DNA bases. We showed that the principal components analysis (PCA), a multivariate statistical tool, can be used to distinguish single apoptotic cells and gastric carcinoma cells based on their Raman spectra.  相似文献   

14.
The intermediate frequency modes (IFM) of single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) were analyzed by Raman spectroscopy and in situ Raman spectroelectrochemistry. The inner and outer tubes of DWCNTs manifested themselves as distinct bands in the IFM region. This confirmed the diameter dependence of IFM frequencies. Furthermore, the analysis of inner tubes of DWCNTs allowed a more-precise assignment of the bands in the IFM region to features intrinsic for carbon nanotubes. Although the inner tubes in DWCNTs are assumed to be structurally perfect, the role of defects on IFM was discussed. The dependence of IFM on electrochemical charging was also studied. In situ spectroelectrochemical data provide a means to distinguish the bands of the outer and inner tubes.  相似文献   

15.
High pressure Raman spectroscopic measurements on nearly zero thermal expansion material TaO2F are carried out up to 19 GPa. Earlier report of high pressure X-ray diffraction studies shows two phase transitions, one at 0.7 and the other at 4 GPa with rhombohedral (R-3c) structure above 4 GPa, but the structure between 0.7 GPa and 4 GPa remained unclear. In high pressure Raman measurements, a reversible, cubic to rhombohedral phase transformation onsets around 0.8 GPa and gets completed at 4.4 GPa with all four predicted normal modes corresponding to R-3c phase and retaining the structure up to 19 GPa. A mixture of cubic and rhombohedral phases is observed between 0.8 and 4.4 GPa. Optically silent modes in the ambient cubic structure exhibit strong, broad Raman bands due to anionic (O/F) disorder in TaO2F altering the local symmetry and allowing for first order Raman scattering. On compression, these disorder induced first order Raman bands gradually decrease in intensity and disappear around 4.4 GPa due to inhibition of local distortion caused by anions, and the modes corresponding to the rhombohedral phase appear. This is a clear evidence of disorder-free rhombohedral single phase exists above 4.4 GPa in agreement with the reported HPXRD results. Temperature dependent Raman measurements reveal that the intensities of Raman bands remain almost unchanged with rise in temperature indicating static disorder in TaO2F. Disorder-induced first order Raman modes at 176, 212, 381 and 485 cm−1 soften with increase in pressure whereas the other modes show low positive Gruneisen parameter. The thermal expansion coefficient calculated using these Gruneisen parameters (−2.91 ppm K−1) is in fair agreement with the reported values (−1 to +1 ppm K−1). On the other hand, all four modes of disorder-free rhombohedral phase show the usual hardening behavior with increase in pressure contributing to positive thermal expansion.  相似文献   

16.
The polymerization of aniline has been studied employing in-situ electrochemical and Raman spectroscopical techniques. Aniline was polymerized by cyclic voltammetry on a Pt surface in sulfuric acid solutions of aniline. The Raman bands were assigned for degradation products of the overoxidized form of polyaniline. A discussion of the degradation mechanism is given. Received: 12 November 1997 / Accepted: 20 January 1998  相似文献   

17.
Cervix-cancer is the third most common female cancer worldwide. Papanicolaou (Pap) test, a well-recognized screening tool, is labor intensive, time consuming and prone to subjective interpretations. Optical spectroscopic methods, sensitive to molecular changes are being pursued as potential diagnostics tool. In this study we have explored Raman spectroscopic approach to differentiate exfoliated cell pellets using 94 cervical cell specimens (45-normal and 49-abnormal specimens). Study was carried out by two approaches. In the first approach, spectral data from 37 cell specimens were acquired and analyzed by Principal Component-Linear Discriminant Analysis (PC-LDA), which yielded classification efficiencies of 86% and 84% for normal and abnormal specimens, respectively. Mean and difference spectra suggest presence of blood in abnormal specimen as a major cause of discrimination. However, as tumor is vascular, bleeding was observed during abnormal sample collection. Hence, spectra of abnormal specimens show heme and fibrin features, and this can lead to false interpretations, as bleeding also occur in several non-cancerous conditions. Therefore, remaining 57 specimens were treated with Red Blood Corpuscles (RBC) lysis buffer in order to remove the RBC influence. PC-LDA resulted classification efficiency of about 79% and 78% for normal and abnormal smear, respectively – comparable to Pap test. Thus finding of the study suggests feasibility of Raman spectroscopic classification of normal and cancerous exfoliated cervical cell specimens.  相似文献   

18.
The determination of film thickness is of prime importance in the quality assurance of coated pharmaceutical preparations. The rapid measurement of this parameter is problematic for multi-particulate pellet systems. The aim of this study was to apply the Raman spectroscopic method for the determination of the thickness of polymer coating on pellets. The change of Raman intensity was compared with measured film thickness, which was calculated from the change of the geometric parameters of the pellets, measured with an image-analyzing system. The results revealed that despite some difficulties Raman spectroscopy is a suitable method for the fast and accurate determination of film thickness on multi-particulate systems.  相似文献   

19.
Solutions of benzenesulfonic acid (BSA) in acrylonitrile in the range 1.02-6.53 mol dm(-3) were studied by FT-Raman spectroscopy. Spectra in the region of the acid SOH and benzenesulfonate anion SO3 stretching bands were analysed by band-fitting procedures in order to ascertain the degree of acid dissociation. This parameter changes from 0.42 (1.02 M solution) to 0.185 (6.53 M solution) despite the strong character of the acid. Interaction of acrylonitrile with undissociated BSA produces a new band in the nu(C[triple bond]N) Raman spectral region, displaced +21.4 cm(-1) and assigned to acrylonitrile molecules H-bonded to BSA. This displacement is in accord with the strong H-donor character of the acid. From the concentration of H-bonded acrylonitrile, the mean number of H-bonds in which each solvent molecule participates can be calculated. This number changes from ca. 0.2 in the less concentrated solution up to ca. 2.4 in the most concentrated solution. These results suggest that BSA-acrylonitrile complexes of fixed stoichiometry do not occur in the range of concentrations studied here.  相似文献   

20.
Single crystals of diglycine perchlorate (DGPCl) and deuterated diglycine perchlorate (DDGPCl) are synthesized and studied using differential scanning calorimetry (DSC) and Raman spectroscopy. DSC data indicated that both DGPCl and DDGPCl undergo a reversible first-order phase transition (solid-solid) at −11.5 °C and −9.3 °C, respectively. The Raman spectra of DGPCl and DDGPCl obtained at ambient temperature are analyzed to infer on the strength of hydrogen bonding in this compound relative to the parent compounds. The occurrence of NH stretching frequency at higher value in DGPCl in comparison with glycine suggests presence of a weak N–H?O hydrogen bond in DGPCl than in glycine. The lower isotropic melting temperature of DGPCl as compared to that of glycine is understood on the basis of the relative strength of hydrogen bonding in these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号